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Vulnerability Discovery & Software Security

Andy Ozment

Summary

An effective means of measuring software security—and the likelihood of vul-
nerability discovery—would be a significant aid in increasing that security. One
proposed technique for better understanding software security is to model vulner-
ability discovery. I examine the existing work on vulnerability discovery models
(VDMs) and find a number of shortcomings. First, many terms are undefined or
lack widely accepted definitions: as a result, the models are not always applied
as intended. Second, the models’ assumptions are not always stated, understood,
or fulfilled: particularly the assumption that vulnerability discovery is an indepen-
dent process. Third, the models are usually applied to unsuitable and inaccurate
data—caused in part by the failure to definite the term ‘vulnerability.’

I create a data set of eight years of vulnerabilities in the OpenBSD operating
system; for each vulnerability, I ascertain the exact date on which it was first injected
into the source code and, as accurately as possible, the date on which it was detected.
I combine clearly dependent vulnerability discoveries into a single ‘vulnerability
detection event,’ and I categorize the data set using two different taxonomies. Using
the categorized data, I test the independence of the vulnerability detection process:
for this data set, some types of vulnerability discoveries are dependent.

Because this data set contains dependent events, I do not apply a vulnerability
discovery model. Instead, I look at other approaches of analyzing the data. I analyze
the evolution of the source code in OpenBSD: the degree to which the source code
changes in each release. I then examine, for each version, the density of vulnerability
detection events per unit size of code added/altered.

I also examine whether or not the rate of vulnerability detection is decreasing over
time for OpenBSD. I find evidence that it is decreasing. I then consider a question
that underlies the debate on vulnerability disclosure policies: are individuals working
independently likely to discover the same vulnerability? I find strong anecdotal
evidence that this independent rediscovery occurs.

Finally, if software engineering approaches to measuring software security prove
inadequate, an economic approach may be more suitable. I consider an auction-
based method to measure the difficulty of discovering a vulnerability in a system.
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Chapter 1

Introduction

Most software contains design and implementation vulnerabilities. The ubiquity
of such vulnerabilities can be traced to two primary problems: complexity and
motivation. Software developers push to create ever more complex products and
work constantly on the boundary of manageable complexity. However, even taking
this difficulty into account, most software contains vulnerabilities that its creators
were readily capable of preventing. The second cause of software insecurity is a
lack of motivation: although vendors are capable of creating more secure software,
the economics of the software industry provide them with little incentive. Both of
these problems are caused, in part, by our inability to measure software security.
Software security is the ability of a system to perform its required functions
without software-caused violations of its explicit or implicit security policy. More
casually, software security is the degree to which software is free of vulnerabilities.

1.1 The need for software security metrics

Although some software security metrics exist, they are inadequate. For example,
estimates of software size or complexity could give an indication of the probable
number of vulnerabilities in a product, but software complexity is itself difficult
to measure. The number of vulnerabilities patched during a given time period is
quantifiable and readily observable; however, this number depends in part on the
level of usage for the software and is also apparent only after the software has been
in use for a period of time. Finally, one could assess the amount of effort put into
security when designing and implementing the software, but such effort does not
always translate to results.

The software engineering importance of security metrics is intuitive: we cannot
consistently improve what we cannot measure. Software engineers are faced with
a steady stream of development methodologies and tools that promise to help de-
velopers improve the security and reliability of their products. Without a metric
for security, there is no good way to choose between these competing tools and
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methodologies. Product managers also need metrics to tell them when a product
has reached an acceptable level of quality.

The economic motivations for a security metric are perhaps less obvious. Con-
sumers generally reward vendors for adding features and for being first to market.
These two motivations are in direct tension with the goal of writing more secure
software, which requires time consuming testing and a focus on simplicity. Nonethe-
less, the problems of software insecurity, viruses, and worms are frequently in the
headlines; why does the potential damage to vendors’ reputations not motivate them
to invest in more secure software?

Vendors’ lack of motivation is readily explained: the software market is a ‘mar-
ket for lemons’ [And01]. In a Nobel prize-winning work, economist George Akerlof
employed the used-car market as a metaphor for a market with asymmetric infor-
mation [Ake70]. Imagine a city in which 20 good used cars and 20 bad used cars
(a.k.a. ‘lemons’) are for sale. The good cars are worth $2,000 and the lemons are
worth $1,000. The sellers know whether or not they are offering good cars, but the
buyers cannot tell which cars are good and which cars are bad. The market-clearing
price is perhaps surprising: buyers are unwilling to pay more than $1,000, because
they could be buying a lemon. However, at that price, no owner of a good car will
sell it; as a result, only lemons are offered for sale.

In short, buyers cannot ascertain the quality of the used cars on the market, so
they are unwilling to pay a premium to obtain an (ostensibly) higher quality car.
Owners of high quality cars thus become unwilling to sell them, because they cannot
obtain a reasonable premium.

The software market suffers from the same asymmetry of information. Even if
vendors have some intuition as to the security of their products, buyers have no
reason to trust the vendors’ assertions. As a result, buyers have no reason to pay
the premium required to obtain more secure software, and vendors are disinclined
to invest in securing their products.

An effective means of measuring software security could decrease the asymmetry
of information and ameliorate the ‘market for lemons’ effect.

1.2 Software security and risk

Software security is only a subset of information security, which also includes hard-
ware security, environmental security, etc. A vulnerability in a single software system
thus may or may not affect the overall risk faced by an organization: that vulner-
able system may be protected via other controls, such as a firewall. Nonetheless,
software security is a critical component of both an organization’s security and how
it measures that security.

If systems can be reached from the internet, then vulnerabilities in those systems
present a real risk: the vulnerability is almost always accompanied by a threat. Au-
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tomated exploits—and worms—are now often created for vulnerabilities in widely
used software systems within days of that vulnerability becoming public. For ex-
ample, the Zotob worm was released five days after a vulnerability became public
in Microsoft Windows [Tre05]. Systems that become infected by the worms must
be repaired, even if the vulnerable system does not protect mission-critical data.
Moreover, an organization cannot predict which vulnerabilities will be incorporated
into worms: as a result, it must treat vulnerabilities in all internet-reachable systems
as a potential risk.

Moreover, no matter how an organization chooses to model its risk, the security
of individual software systems is a component in that model. Until we can better
measure software security, the values we assign to those components of the overall
model will be little more than guesses. The ability to measure software security is
thus an important part of the ability to measure organizational risk.

Unfortunately, the current ‘measures’ of software security are a consideration
of the process by which the product was made, a superficial security review of the
product, or a gross consideration of its vulnerability history. In addition to being
imprecise, none of these techniques are consistent, reliable, or particularly useful in
cross-product comparison.

1.3 Understanding vulnerabilities

In this work, I do not propose a silver-bullet security metric nor do I propose a
system of measurement. Our understanding of software security and vulnerabilities
has not progressed to the point where we can construct measurements that satisfy
measurement theory. Instead, in this work I propose and evaluate two imperfect yet
nonetheless useful approaches to better understanding vulnerabilities and software
security: one that is ‘engineering’ in nature and another that is ‘economic’ in na-
ture. Both approaches focus on vulnerabilities and the process by which they are
discovered.

The first approach uses information that might be characterized as ‘engineering’
data: when was a vulnerability introduced, when was it discovered, how is the
source code of a system changing, etc. This approach employs statistical analysis of
vulnerabilities that have already been discovered and characteristics of the systems
in which they were discovered.

The second approach uses ‘economic’ data: what is the auction-ascertained price
of a previously-unreported vulnerability in a specific system. Entities offer a steadily
increasing reward for a vulnerability in a system: the first person to report such a
vulnerability receives the reward. The reward serves as both an incentive to find a
vulnerability and a measurement of the perceived value of that vulnerability.

Both of these approaches provide insight into the number of vulnerabilities in a
system, the rate at which they are detected, and the difficulty in doing so. Neither

Andy Ozment Vulnerability Discovery & Software Security
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approach can provide perfect information on how many vulnerabilities exist in a sys-
tem: that goal may well be impossible. The estimates provided by both approaches
can be rapidly made obsolete by the discovery of a new type of vulnerability or a
new tool for detecting vulnerabilities.

1.3.1 Users of these techniques

The engineering approach is probably most useful to software vendors. It will enable
them to compare products, teams, and development methodologies. Most impor-
tantly, it will enable vendors to better allocate and schedule resources: to anticipate
how frequently they will need to patch vulnerabilities and to plan accordingly.

Customers and vendors will both value the information provided by the economic
approach. It will provide them with a monetary value that approximates the cost of
discovering a vulnerability in a system. Customers can use the information provided
by this approach to compare competing systems: the system in which vulnerabilities
cost the most is more secure. For vendors, this cost is another means of comparing
products, teams, and development methodologies. The comparison is made simple
by the fact that the unit of measurement is monetary.

The two approaches are complementary. The economic approach provides more
readily understandable and comparable information: the price of a vulnerability in
a system. It is also self-correcting with respect to the number of detectors investi-
gating a product. If the price has risen to a high level for a system, more detectors
will be motivated to test that system. A price that remains high is thus a reliable
indicator. The engineering approach is more susceptible to errors caused by vari-
ability in the number of detectors investigating a system. On the other hand, only
the engineering approach provides vendors with information that assists in planning
and resource allocation. Moreover, the engineering approach does not require the
cultural shift necessary for the implementation of the economic approach: many
vendors are currently leery of offering money for vulnerabilities.

1.3.2 Applicable systems

The engineering approach utilizes an analysis of vulnerabilities that have been re-
ported in a system, so it can only be performed on systems in which enough vul-
nerabilities have been reported. Currently, this requirement is met for systems for
which:

1. Security is an important characteristic of the system and it goes through a
rigorous testing process before it is deployed. In this case, the engineering
approach would be applied internally, to internally collected vulnerability in-
formation.

2. The system is publicly available and of interest to vulnerability detectors. In
this case, the engineering approach could be applied internally or externally,
using public vulnerability databases.

Andy Ozment Vulnerability Discovery & Software Security
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This dissertation has focused on the second type of system. Examples of that
type include operating systems (MS Windows, Gnu/Linux, *BSD, OS X); database
management systems (Oracle); web browsers (Firefox, IE, Safari); web servers (Apache,
IIS); and other popular servers (sendmail, lpd, BIND).

The economic approach is more versatile: the interested entity offers a reward
for vulnerabilities and thus generates the necessary interest in discovering those
vulnerabilities. As a result, the economic approach may be tried for any system.

1.4 Thesis

A better understanding of vulnerabilities and the nature of vulnerability discovery
can provide useful insight into software security.

Vendors and customers can use this information for system comparison and re-
source allocation. Software engineering tools, such as vulnerability discovery models,
are a potentially useful approach to estimating characteristics of software security.
However, previous work in this area fails to fully account for the assumptions of the
models and the shortcomings of public databases. Vulnerability databases provide
a potentially rich source of information, but the existing public databases provide
information that is inadequately precise and at too low a level of detail. Nonethe-
less, a careful examination of the vulnerability history and source code of OpenBSD
provides useful information, e.g. the rate of independent vulnerability detection ap-
pears to be decreasing. The success of this analysis suggests that the software engi-
neering approach could be usefully employed by vendors. More information about
the discovery process, such as the likelihood of independent discovery of the same
vulnerability, is also critical for the formation of effective vulnerability disclosure
policies. Economic approaches, such as a bug auction, provide a better means of
measuring software security but are less useful for estimating other characteristics
of the vulnerability discovery process.

1.5 Outline

I first describe in Chapter 2 the vulnerability lifecycle from the developer’s perspec-
tive, and I present definitions for the terms I will use throughout this dissertation.
In Chapter 3, I introduce vulnerability discovery models (VDMs). After presenting
the existing literature, I identify several assumptions made by that literature that
may not be valid.

Other than my own work, the VDM literature relies upon data from the National
Vulnerability Database (NVD), which I describe in Chapter 4. I note that the NVD
was not designed with the purpose of VDMs in mind, and I highlight the problems
in applying VDMs to its data.

Realizing the shortcomings of the NVD for the purpose of modeling vulnerability
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discovery, I create my own database: I investigate every vulnerability reported in
OpenBSD over a period of eight years. Chapter 5 describes the data set created
through this efforts.

Unfortunately, the security and software engineering communities do not have
a standard taxonomy for vulnerabilities. I discuss the literature on vulnerability
taxonomies in Chapter 6. I then apply both the NVD taxonomy and a custom tax-
onomy to the OpenBSD dataset. Using the taxonomized OpenBSD data, I consider
in Chapter 7 whether vulnerability detection is an independent process.

In Chapter 8, I analyze the evolution of the OpenBSD source code. I then
consider the vulnerability density: the number of detection events for vulnerabilities
introduced in a version per unit size of source code added/altered during that version.
In Chapter 9, I use the OpenBSD data sets to consider whether or not the rate of
vulnerability reporting is declining in OpenBSD.

The likelihood that independently working detectors will discover the same vul-
nerability has critical import for vulnerability reporting policies. In Chapter 10,
I provide evidence that independent rediscovery occurs with some non-trivial fre-
quency. I then consider the implications of this result on vulnerability reporting
policies.

Software engineering approaches may not be the best way to measure software
security. In Chapter 11, I consider market-based proposals, and I describe an im-
provement to these proposals: the bug auction.

I then propose areas for future work in Chapter 12, and in Chapter 13, I sum-
marize my results and draw conclusions.

1.6 Publication history

Much of the material in this dissertation has previously been presented at peer-
reviewed workshops or conferences: [Ozm04; Ozm05; Ozm06; OS06b; Ozm07]. Dur-
ing my time at Cambridge, I have also published work unrelated to this dissertation:
[GLO+04; OSD06; OS06a; SDOF07; AMNO07].

1.7 A note on style

In “The Hedgehog, the Fox, and the Magister’s Pox,” Stephen Jay Gould discusses
different approaches to writing within the academic community. In particular, he
criticizes the use of the passive tense and the avoidance of personal pronouns in
scientific writing [Gou03]. I find his arguments persuasive and have thus chosen to
use personal pronouns in this work. I use the pronoun ‘we’ to refer to the community
of individuals directly interested in software security. When referring to a paper
with multiple authors, I use an & rather than a written ‘and’ inside the list of the
coauthors names.
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Chapter 2

Concepts and Definitions

The information security field lacks widely accepted, standard, definitions; as a
result, the disparity of usage in the field is a source of confusion. In this chapter, I
define the terms I will use. I use these definitions to describe vulnerability models
in the next chapter. Then, in Chapter 4, I show that confusion about the definition
of a vulnerability has resulted in inconsistent data in public vulnerability databases.

One of the challenges when defining terms in information security is the per-
spective to which the definition applies. For example, William Arbaugh et al. note
that ‘attack’ can have different meanings for a system’s defender and an intruder
[AFM00]. The definitions here are from the perspective of a developer or a detec-
tor whose goal is to improve the security of software by decreasing the number of
vulnerabilities it contains.

2.1 Software reliability engineering

Many software vulnerabilities are caused by implementation mistakes. There is thus
an inherent overlap between software security and software reliability engineering,
because the latter field is concerned with reducing the number and impact of such
implementation mistakes.

The field of software engineering benefits from standardized terminology: e.g.
the “IEEE Standard Glossary of Software Engineering Terminology” [IEE90]. One
way to remedy lack of standard definitions in software security is to utilize, whenever
possible, the standard terminology of fields like software engineering.

In this work, I use standard software engineering terms when they are available;
otherwise, I define my terms so that they are consistent with these standard def-
initions. The fundamental software engineering terms upon which I will rely are
failure, fault, mistake, and error.

A failure is the “inability of a system or component to perform its required
functions within specified performance requirements” [IEE90]. A more intuitive de-
scription used in software reliability is that “a failure occurs when the user perceives
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that the program ceases to deliver the expected service” [Lyu96, p. 12].
A fault is an “incorrect step, process, or data definition in a computer program”[IEE90].

All failures are caused by faults, but not all faults lead to a failure. Faults are also
known as ‘bugs’ or ‘flaws.’

A mistake is “a human action that produces an incorrect result” [IEE90]. An
error is “the difference between a computed, observed, or measured value or condi-
tion and the true, specified, or theoretically correct value or condition. For example,
a difference of 30 meters between a computed result and the correct result” [IEE90].

A nice summary of key software engineering terminology is that the field “dis-
tinguishes between a human action (a mistake), its manifestation (a hardware or
software fault), the result of the fault (a failure), and the amount by which the
result is incorrect (the error)” [IEE90].

Rajeev Gopalakrishna et al. assert that the goal of software security is to prevent
“deliberate attempts to cause failure by triggering faults” [GSV05]. Correspondingly,
Sarah Brocklehurst & Bev Littlewood assert that a vulnerability is the security field’s
equivalent to a ‘fault’ [BLOJ94].

2.2 Software vulnerability

The computer security field lacks a widely accepted definition of vulnerability.

2.2.1 Definition

The definition that I prefer and that I shall use here was proposed by Ivan Krsul:
a software vulnerability is “an instance of [a mistake] in the specification, devel-
opment, or configuration of software such that its execution can violate the [explicit
or implicit] security policy” [Krs98].

I have made two important changes to Krsul’s definition. First, he originally
used ‘error’ where I have written ‘a mistake.’ His use of ‘error’ is counter to the
definition used in software engineering, where it describes “the amount by which the
result is incorrect” [IEE90]. I have also added ‘explicit or implicit’ to highlight the
fact that all systems have a security policy, even if the designers have not formally
written it down.

I prefer Krsul’s definition because it highlights different areas in which a soft-
ware vulnerability can originate: specification, development, or configuration. It
emphasizes the security policy rather than the security system.

Finally, it notes that a vulnerability is a single instance of a mistake, so there is
no confusion about whether or not different instances of the same mistake constitute
different vulnerabilities. The literature has sometimes used vulnerability to refer to
a single instance of a mistake and other times to refer to all instances of the same
mistake. If a developer writes code with an integer overflow and then copies that
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code in another area of the system, is that one vulnerability or two? With the
definition above, it is two vulnerabilities.

According to this definition, vulnerabilities are a subset of faults. Not all faults
are vulnerabilities, but all vulnerabilities are faults. Both terms can encompass the
results of mistakes made in the design phase.

Software vulnerabilities are a subset of vulnerabilities: the term ‘vulnerabil-
ity’ can encompass susceptibility to hardware manipulation, social engineering, etc.
However, here I will use ‘vulnerability’ as shorthand for ‘software vulnerability.’

2.2.2 Alternative definitions

A number of other authors have proposed definitions for ‘vulnerability,’ but all
of these alternatives have significant shortcomings. For example, some definitions
assume that a vulnerability results in a violation of the security system or security
measures:

A “weakness in the security system, for example, in procedures, de-
sign, or implementation, that might be exploited to cause loss or harm”
[PP07, p. 6].

However, the focus on a security system or security measures excludes a num-
ber of cases that I believe are vulnerabilities. For example, consider a multi-user
system that contains private data but that lacks access control. When a user reads
another user’s private data, he is not violating the security system (it doesn’t exist).
Nonetheless, I believe that this system suffers from a design vulnerability. One so-
lution to this shortcoming is to focus on the security policy rather than the security
system.

Other definitions are ambiguous. For example, the following definition uses qual-
ifiers such as “usually” or “often:”

“The CERT/CC has an internal understanding that a vulnerability:
1) Violates an explicit or implicit security policy
2) Is usually caused by a software defect
3) That similar defects are the same vulnerability (e.g. SNMP was 2
vulnerabilities)
4) Often causes unexpected behavior” [Lon03].

Perhaps the most canonical definition was produced by the Computer Science
and Telecommunications Board of the US National Research Council:

“A weakness in a system that can be exploited to violate the system’s
intended behavior. There may be security, integrity, availability, and
other vulnerabilities” [CSTB01].
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Unfortunately, that definition does not address whether or not similar instances
of a security fault should be considered the same or different vulnerabilities.

A more recent definition uses fault in a nonstandard way and furthermore relies
upon the (undefined) meaning of ‘harm.’ This definition resulted from a useful but
abstract exploration of software engineering and survivability definitions:

An “internal fault that enables an external fault to harm the system”
[ALRL04].

Arbaugh et al. propose two different definitions. These definitions address many
of the concerns mentioned above, but they are too broad: they include hardware
vulnerabilities, while in this work I am concerned only with software vulnerabilities.

“A flaw in an information technology product that could allow vio-
lations of security policy” [AFM00, p. 52].

“A flaw or defect in a technology or its deployment that produces an
exploitable weakness in a system, resulting in behavior that has security
or survivability implications” [AFM00, p. 54].

2.3 Actors and entities

The vulnerability discovery process necessarily includes various actors and entities;
those important to this work are defined below.

A detector finds instances of vulnerabilities in software systems. I have pre-
viously used the term ‘vulnerability hunter’ to describe detectors [Ozm05; Ozm06;
OS06b]. I believe that ‘detector’ is superior because it also encompasses the situa-
tion in which a vulnerability is unintentionally discovered. Other works have used
vulnerability ‘identifier’ [AKN+04]. However, related bodies of literature (e.g. on in-
trusion detection or biometrics) use ‘detect’ to refer to the discovery of an instance
of something and ‘identify’ to refer to the act of categorizing/matching an instance.
In this work, I will use the terms ‘detect’ or ‘discover’ interchangeably with respect
to vulnerabilities.

A vendor is any producer of software, regardless of whether or not that software
is sold commercially. It is equivalent to the term ‘producer.’

A vendor detector is an employee of a vendor whose job responsibilities include
searching for vulnerabilities. An external detector searches for vulnerabilities in
systems whose vendors do not directly employ him. An accidental detector has
unintentionally discovered a vulnerability.

In the context of vulnerabilities, public fora are the means by which vulnera-
bility information is widely disseminated. Examples of public fora are: the Bugtraq
[Secb] mailing list, the Full Disclosure [Seca] mailing list, and US/CERT announce-
ments.
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A vulnerability market pays detectors for vulnerability information. ‘White’
markets like TippingPoint or iDefense forward the information to the vendor and
work to keep malicious entities from learning about the vulnerability. ‘Black’ mar-
kets are illegal and are generally unconcerned with whether or not the vulnerability
is used for exploitation.

iDefense’s business model is to sell subscriptions to their advance warning service.
They thus purchase vulnerability information and then notify both the vendor and
their own customers about the vulnerability. They may not tell their customers the
exact nature of the vulnerability; instead, they may simply warn customers to, for
example, use their firewall to block connections of a certain type [iDe07].

TippingPoint sells an intrusion prevention system: a combination of hardware
and software that proactively blocks connections it determines are attacks. Their
‘Zero Day Initiative’ buys vulnerabilities and then both informs the vendor and
updates their customers’ intrusion prevention systems [3Co05].

A disclosure institution is any benign organization that receives vulnerabil-
ity reports and forwards them to the appropriate vendor(s). The term includes
CERT/CC and white vulnerability markets like TippingPoint and iDefense.

2.4 Disclosure policies

The adjectives ‘benign’ and ‘malicious’ lie at the heart of many distinctions made
in the vulnerability detection process. For example vendors may consider detectors
benign if those detectors follow a specific vulnerability disclosure policy. There is
and will continue to be ambiguity in the definitions of these terms, because the
different actors in the vulnerability life cycle have different goals and philosophies.
Here, I use ‘benign’ to indicate an actor that follows the principles of ‘responsible
disclosure.’

A responsible disclosure policy specifies that vendors must be informed about
a vulnerability and given time to create a patch before the detector makes the vulner-
ability public. One example of a responsible disclosure policy is that of CERT/CC:

All vulnerabilities reported to the CERT/CC will be disclosed to
the public 45 days after the initial report, regardless of the existence or
availability of patches or workarounds from affected vendors. Extenuat-
ing circumstances, such as active exploitation, threats of an especially
serious (or trivial) nature, or situations that require changes to an es-
tablished standard may result in earlier or later disclosure. Disclosures
made by the CERT/CC will include credit to the reporter unless oth-
erwise requested by the reporter. We will apprise any affected vendors
of our publication plans, and negotiate alternate publication schedules
with the affected vendors when required.
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It is the goal of this policy to balance the need of the public to be
informed of security vulnerabilities with the vendors’ need for time to
respond effectively. The final determination of a publication schedule
will be based on the best interests of the community overall [CER05].

A vulnerability detector follows the practice of instant disclosure if he makes
public a vulnerability without previously notifying the vendor and giving it adequate
time to prepare a patch. (This definition is derived from but more explicit than that
in [AKN+04].) The definition of ‘adequate time’ is part of the responsible disclosure
debate, which is discussed in Chapter 10.

A benign detector wants to prevent the exploitation of a vulnerability. For
example, a benign detector may: chose not to inform anybody of the vulnerability,
inform the vendor, inform a disclosure institution, or make public the vulnerability.
Benign detectors are sometimes referred to as ‘white hats.’

A malicious detector is unconcerned about whether or not a vulnerability is
exploited. For example, a malicious detector may sell a vulnerability in the black
market or publish the vulnerability without having informed the vendor. Malicious
detectors are sometimes referred to as ‘black hats.’

2.5 Vulnerability life cycle

Vulnerabilities can be characterized according to a hypothetical life cycle. This life
cycle is defined by specific events.

2.5.1 Events and data points

• Injection Date: The injection date is the date on which the vulnerable code
is first checked into the developer’s source code repository. If a repository is
not in use, it is the first date on which the vulnerable code is added to the
build or compiled.

• Release Date: The release date is the date of public release for the system
that first contains the vulnerability.

• Discovery Date: The discovery date is the date on which the vulnerability
is first detected.

• Disclosure Date: The disclosure date is the date on which the detector first
notifies the vendor or a disclosure institution.

• Public Date: The public date is the date on which the existence of the
vulnerability is made publicly known (e.g. via a public fora or the release of a
patch). The public date is often the same as the patch date.
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• Patch Date: The patch date is the date on which the first correction for the
vulnerability is released, regardless of whether the correction is official (from
the vendor) or correct (lacking faults).

• Scripting Date: The scripting date is the date on which the first automated
exploit for the vulnerability is released. (One example of an automated exploit
is a worm. Another example is a program that exploits the vulnerability to
provide its user with administrative control on a remote machine.)1

The events in this life cycle can occur in many different orders. For example,
a vulnerability may be discovered before it is born: i.e. it may be detected during
testing and fixed prior to the product’s release. Hilary Browne et al. argue that
these vulnerabilities should be disregarded [BAMF00, p. 2]; I disagree. For large
software products, there may be enough of these cases to enable useful statistical
analysis. Moreover, these cases can be the best documented.

In practice, not all of the above dates will be known for each vulnerability.
Vulnerability data sets may instead record the date known. The date known is the
earliest confirmed date on which someone is aware of the vulnerability’s existence.
Ideally, this is the discovery date; in practice, it may be the disclosure date or the
public date.

For the remainder of this work, I will say that vulnerabilities were detected at
a certain date or in a certain version of the program. I am actually referring to
the date known: unless I say otherwise, I have no information on the exact date on
which a vulnerability was detected.

2.5.2 Status

A vulnerability’s status depends on which of the events in the life cycle have occurred:

• Unknown Vulnerability: An unknown vulnerability exists in the software
but has not yet been detected.

• Secret Vulnerability: A secret vulnerability has been detected, but the
detector has not informed the vendor, the public, or a disclosure institution.
If the detector is malicious, she may be exploiting the vulnerability.

1Some of these events are borrowed from Arbaugh et al. [AFM00], although I define them

differently: discovery, disclosure, publication, and scripting. Arbaugh et al. use ‘birth date’ instead

of ‘release date.’ I believe the latter is more clear, because the former could also apply to the

injection date. They also use ‘correction date’ instead of ‘patch date.’ Again, I find the latter

term more clear, because the former could be misinterpreted as the date on which a correction

is completed internally at the vendor. Their definition of disclosure includes acts like posting the

vulnerability to the Bugtraq mailing list: I believe that posting to fora like Bugtraq results in

making the vulnerability public.
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• Disclosed Vulnerability: A disclosed vulnerability has been discovered, and
the detector has disclosed it to the vendor or a disclosure institution.

• Public Vulnerability: A public vulnerability has been detected and made
public through either a patch, a public forum, or the media.

• Scripted Vulnerability: A scripted vulnerability is one for which automated
exploits exist.

As example, consider the life cycle and status of a single vulnerability. Soft-

ware vendor DiligentCompany is developing SecureProduct. A developer for

DiligentCompany writes code for SecureProduct 2007 that contains a buffer

overflow. He submits the code into a CVS repository, at which point the vul-

nerability has been injected. The date on which SecureOS is first released is

also the release date for the vulnerability. The vulnerability is unknown until

it is discovered by a detector, Susan. It is secret until Susan discloses it to

CERT/CC. Eventually, DiligentCompany releases a patch; on the same day,

Susan posts a notice to Bugtraq about the vulnerability. That day is thus both

the patch date and the public date for the vulnerability. An automated exploit

is later released and the vulnerability is then considered scripted.
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Chapter 3

Vulnerability Discovery Models

Vulnerability discovery models (VDMs) are probabilistic methods for modeling the
discovery of software vulnerabilities in a single software system. They operate on
historical system and vulnerability data: e.g. the system’s release date, system usage
information, and the date on which a vulnerability is discovered. The models can
be used to estimate characteristics of the vulnerability discovery process for that
system.

VDMs are a potentially useful tool for understanding vulnerabilities and es-
timating characteristics of software systems. In this chapter, I propose standard
definitions for VDMs, and I discuss the different means of assessing their efficacy.
I then provide an overview of the existing VDM literature. Finally, I consider the
assumptions upon which VDMs rely and consider whether the existing literature
has met those assumptions. In Chapter 4, I examine the suitability of the databased
used by this literature.

For an example of VDMs and their use, consider our hypothetical system, Se-
cureProduct.

The number of security patches each month in the first year after Secure-

Product is released is: 0, 6, 10, 18, 17, 15, 14, 11, 10, 8, 7, 6. A VDM that

predicts an S-shaped curve might be able to accurately model this data. We

could extend the curve to estimate how many patches will be released for each

of the next six months. DiligentCompany could use this information to schedule

time for its engineers to work on those future patches.

However, even our simple example demonstrates some of the challenges of mod-
eling vulnerability discovery. Is DiligentCompany fixing only one vulnerability per
patch or do their patches fix multiple vulnerabilities? What is a vulnerability? If
a source code file contains buffer overflows in two similar functions, is that one vul-
nerability or two? According to the definition of vulnerabilities that I introduced
in Section 2.2, two instances of a buffer overflow are two different vulnerabilities.
However, most prior work in this area has not defined vulnerability, and thus this
ambiguity is most often unresolved.
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Worse, this hypothetical model would not necessarily say anything about vul-
nerability discovery: it models the rate at which patches are released. But what
causes DiligentCompany to release a patch—and is the time it takes to develop a
patch always the same?

Vulnerability discovery models may prove to be a useful tool for estimating and
predicting vulnerability characteristics in software. However, the current litera-
ture almost universally ignores significant ambiguity, theoretical concerns, and data
shortcomings. Before we can effectively discuss VDMs, we require a standardized
terminology. Before we can apply VDMs, we need to understand their theoretical
foundation and to identify the situations for which they are appropriate. Before we
can successfully test VDMs, we need reasonably precise data whose limitations we
understand.

3.1 SRMs and VDMs

Existing VDMs are based upon previous work on software reliability models, a.k.a.
software reliability growth models. “A software reliability model (SRM) speci-
fies the general form of the dependence of the failure process on the principal factors
that affect it: fault introduction, fault removal, and the operational environment”
[Lyu96].

SRMs are based upon the assumption that the reliability of a program is a
function of the number of faults that it contains. As faults are detected and removed,
the system will fail less frequently and hence be more reliable. SRMs thus “apply
statistical techniques to the observed failures during software testing and operation
to forecast the product’s reliability” [AIA93].

These models can be utilized to estimate characteristics about the number of
faults remaining in the system and when those faults may cause failures. These
estimates can be used to gauge the amount of further testing required to meet
reliability requirements.

3.1.1 Definition of a VDM

Although SRMs have been in use for almost three decades, the security field has
only begun to apply these models to vulnerability data in the past few years. As
a result, this new subfield lacks a standard terminology. Omar Alhazmi & Yash-
want Malaiya proposed the application of SRMs to vulnerabilities as ‘vulnerability
discovery models’ (VDMs) [AM05a]. I have previously proposed the term ‘software
security growth models,’ acknowledging the relationship between this technique and
the term ‘software reliability growth model’ (a synonym for SRMs) [Ozm06].

Both proposed names have shortcomings. The term ‘vulnerability discovery
model’ hides the fact that these models have so far only been applied to vulnerability
reporting data, rather than discovery data. The term ‘software security growth
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model’ ignores the fact that the rate of vulnerability reporting may increase, and
thus software security may not always grow. It also suffers from the need for a
standard definition of ‘software security.’ An alternative, but less precise, approach
is used by Gopalakrishna et al.: they consider the ‘vulnerability likelihood’ of a
system, but their term encompasses a broader range of probabilistic methods than
VDMs [GSV05].

The term ‘vulnerability discovery model’ appears to have the most widespread
traction in the literature, and I will use it here. However, it does not yet appear to
have been formally defined, so I propose this definition: A vulnerability discovery
model (VDM) specifies the general form of the dependence of the vulnerability
discovery process on the principal factors that affect it: e.g. vulnerability introduc-
tion, vulnerability removal, detector effort, and the operational environment. (This
term was introduced by Alhazmi & Malaiya [AM05a] but not defined; I have defined
it using a variation of Lyu et al.’s definition of SRMs [Lyu96].)

In this work, I shall reserve the term ‘SRM’ to refer to models that have been
applied to failures and the term ‘VDM’ to refer to models that have been applied
to vulnerability discoveries. However, it is important to note that the same model
can be used as both an SRM and a VDM: most existing work takes existing SRMs
and applies them as VDMs.

Among the outputs of VDMs are two particularly useful estimates. First, the
estimate of the total number of vulnerabilities. Second, the mean time to next
vulnerability (MTTNV): the mean time until another vulnerability is detected in
the software system [GS05]. The MTTNV is analogous to the software engineering
term ‘mean time between failures.’1

3.1.2 Common SRMs

Only two VDMs have been designed specifically as such: the Alhazmi & Malaiya
models discussed in Section 3.4.4, below. The remainder of the models that have
been applied to vulnerability data were originally created to model fault discovery.
Most of these models are constructed with the belief that the time between fail-
ures follows a specific distribution: e.g. exponential, Weibull, or gamma. A more
detailed description of common SRMs and their functional forms is available else-
where [MIO87; AIA93; Far96]. However, some models were designed with specific
assumptions about faults or the means by which software is designed, and these
assumptions are worth highlighting.

1Rajeev Gopalakrishna & Eugene Spafford state that a breach or an intrusion can be considered

the security field’s equivalent to the reliability field’s ‘failure’ [GS05]. That assertion is logical

from the standpoint of a system’s user: the system has failed to provide the expected service.

However, I am more interested in the standpoint of the developer. From that perspective, a better

analogy compares a failure to a vulnerability detection event, defined below in Section 3.5.3. The

developer considers a failure to be the event that enables him to find and correct a vulnerability—

and intrusions may not result in the detection of a new vulnerability.
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The Schneidewind model assumes that the rate of fault detection changes (pos-
sibly dramatically) over time. As a result, estimates of the future rate of detection
should be based upon recent data. This approach is unusual: most models treat
all historical data equally. Brooks & Motley constructed a model that takes into
account that new faults may be introduced even as others are removed. Yamada’s
S-shaped model assumes a learning curve: faults are discovered slowly while the
testers first learn the system. Then, fault discovery accelerates. Eventually, it levels
off as the obvious faults are removed and only the more difficult to find faults remain
[Far96]. The AML model described in Section 3.4.4 makes a similar assumption.

These ‘traditional’ models only change the estimated reliability of a system after
faults are removed. In contrast, Bayesian models allow for an increase in estimated
reliability as the system is used and no failures occur. A system’s calculated relia-
bility is thus “a reflection of both the number of faults that have been detected and
the amount of failure-free operation” [Far96, p. 104]. The Littlewood-Verrall model
is a commonly used Bayesian SRM.

3.2 The benefits of using VDMs

VDMs may provide useful quantitative insight to supplement the current approaches
to assessing software security. In particular, VDMs can be used for both prediction
and comparison.

Some of the possible uses of VDMs are:

1. Helping vendors to allocate and schedule their resources.

2. Helping users to allocate and schedule their resources.

3. Estimating the time necessary to achieve an assurance goal.

4. Quantifying the impact of design and implementation methodologies.

5. Comparing similar software systems.

The estimated total number of vulnerabilities and the MTTNV can be used by
vendors to allocate and schedule developer resources. The estimate of the total
number of vulnerabilities can provide insight into the total resources and time nec-
essary for the maintenance of a system. The MTTNV enables vendors to schedule
developer time for the creation of patches, quality-assurance time for the testing of
those patches, and possibly a regular schedule for their release. For example, in 2003
Microsoft instituted a schedule of releasing security patches on the second Tuesday
of every month, which was dubbed ‘patch Tuesday’ [Mic05].

The MTTNV is also useful to users: system administrators can use it to estimate
how frequently they will have to test and apply security patches for a particular
system. Indeed, one author notes that Windows administrators should “devote a
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certain number of person-days per month to test and distribute whatever critical
patches may come out” [Liv03].

Finally, vendors can also use VDMs to estimate the time necessary to achieve an
assurance goal. For example, this goal might be in terms of the number of remaining
undetected vulnerabilities or in terms of a desired MTTNV. Vendors can thus create
a release schedule based upon the expected date on which this goal will be achieved.

Both vendors and customers want to quantify and compare software security.
Vendors are interested in comparing similar projects to see whether their internal
development processes are improving and to predict whether the projects will have
similar behavior in the field. Customers may want to identify which of two software
systems has fewer remaining vulnerabilities or a lower rate of vulnerability detection.

In previous work, I proposed the use of VDMs as a means for customers to
compare the security of two different systems [Ozm06]. This proposal was premature.
While it is worthy of investigation, we need a great deal more experience with VDMs
before we can be confident in their efficacy for cross-project comparison—much less
comparison across both vendors and projects. In particular, the assumptions upon
which VDMs rely may prevent effective comparisons of this sort. These assumptions
are discussed below in Section 3.5, but first I consider the means by which VDMs
are assessed.

3.3 Assessing VDMs

Software reliability practitioners note that not every SRM is suited to every project,
but most projects can be modeled accurately by at least one SRM [Far96]. Intu-
itively, the same is likely to be true of VDMs.

However, before we can be confident that a VDM is a useful model for the
discovery process in a specific project, we must test both its absolute and relative
accuracy: is the VDM accurate and is it the most accurate such model for this
project?

A preliminary step in testing the accuracy of a VDM is to ensure that the model
has acceptable goodness-of-fit, which is a necessary but not sufficient prerequisite.
The most common means of testing a model’s goodness-of-fit is the chi square test.
Models are first fitted to the data, and parameters that provide the best fit are
found.

However, the critical test of a model is its predictive accuracy. There are several
common ways of assessing a model’s absolute and relative predictive accuracy.

3.3.1 Absolute predictive accuracy

The VDM literature has relied upon two different approaches to assessing absolute
predictive accuracy. In previous work, I used u- and y-plots. These test one-step-
ahead predictive accuracy, which is useful for scheduling patches. Other work has
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employed average error and average bias: these test how effective the model is
at predicting the final vulnerability count. Future work in this area should apply
both tests, to enable comparison within the literature and to assess both aspects of
models’ predictions.

One-step-ahead u-plot & y-plot

One approach to absolute predictive accuracy is to assess a model’s ability to make
accurate one-step-ahead predictions.

“The purpose of the u-plot is to determine whether the predictions,
F̂j(t), are on average close to the true distributions, Fj(t).... If we were
to observe the realization tj of Tj , and calculate uj = F̂j(tj), the number
uj will be a realization of a uniform random variable. When we do this
for a sequence of predictions, we get a sequence uj , which should look like
a random sample from a uniform distribution. Any departure from such
uniformity will indicate some kind of deviation between the sequence of
predictions... and the truth” [BL96, p. 139].

Sarah Brocklehurst & Bev Littlewood suggest considering the results graphically
as the u-plot: plotting the sample distribution function of the uj sequence and
comparing it with the line of unit slope. They suggest the graphical approach
because it can make clear the nature of the prediction’s deviations from the true
function, but a non-graphical consideration is also possible [BL96].

However, the u-plot can present an overly optimistic picture of bias if there
are trends in the errors that average out. (For example, if pessimistic early bias
is cancelled by an optimistic later bias.) In order to detect this situation, the u-
plot should be paired with the y-plot test. The latter test transforms the sequence
uj into one that looks like “the realization of the successive inter event times of a
homogeneous Poisson process; any trend in the uj ’s will show itself as a nonconstant
rate for this process” [BL96, p. 140].

Final count average error & bias

Instead of considering one-step-ahead predictions, another approach ascertains the
accuracy of the model’s continuous predictions of the total number of vulnerabilities
in the product.

For example, Alhazmi & Malaiya apply VDMs to data divided into n equal-
length calendar time intervals t1, t2, t3, ..., tn. A best-fit model is used to predict the
estimated total number of vulnerabilities (Ωi) based on the information available at
time ti. The total number of vulnerabilities known to exist in the product is denoted
by Ωknown. This information is used to calculate the average error (AE) and average
bias (AB) [AM06b]:

Andy Ozment Vulnerability Discovery & Software Security



Ch. 3: Vulnerability Discovery Models 31 of 139

AE =
1
n

n∑
i=n

∣∣∣∣Ωi − Ωknown

Ωknown

∣∣∣∣ (3.1)

AB =
1
n

n∑
i=n

Ωi − Ωknown

Ωknown
(3.2)

3.3.2 Relative predictive accuracy

Two tests of the relative predictive accuracy of a model are the Akaike Information
Criteria (AIC) and the Prequential Likelihood Ratio (PLR). These tests cannot pro-
vide information on the absolute accuracy of the model; instead, they indicate which
of several competing models is the most accurate. The former is an entropy-based
approach used to find the model that best explains the data with a minimum of free
parameters. Alhazmi & Malaiya use the AIC to compare different VDMs [AM05a].
In previous work, I have used the PLR: it examines whether one model’s probability
density function is everywhere closer to the real probability density function than
the other model being tested [BL96, p. 131].

3.4 VDM literature

The existing literature on VDMs can be divided according to the four research groups
most active in this area. I will introduce the literature here; in later sections, I will
assess it with respect to common problems in modeling.

Most of the literature described here uses vulnerability data from the National
Vulnerability Database (NVD), which is described in more detail in Chapter 4.

3.4.1 Rescorla

The VDM literature began in 2004 with a workshop paper by Eric Rescorla [Res04] (a
revised version was later published as [Res05]). Rescorla was investigating whether
or not the social value of vulnerability discovery by external detectors is positive (this
question is further discussed in Chapter 9). He applied two models to vulnerability
data from the NVD: a linear vulnerability discovery model (LVD) and an exponential
Goel-Okumoto model. The former is often used in the literature as a baseline with
which to compare more complex models. The latter was developed as an SRM
[GO79].

Rescorla was unable to fit either the LVD or the exponential Goel-Okumoto
model to data on three operating systems: WinNT4, Solaris 2.5.1, and FreeBSD 4.0.
He was able to fit both models to RedHat 6.2 data. However, as I note in Section
3.3, goodness-of-fit is a necessary but not sufficient requirement for a model. More
important is the model’s predictive accuracy. Rescorla did not test either model’s
predictive accuracy against the Redhat 6.2 data, so neither can be considered proven
[Res05].
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3.4.2 Purdue University

Gopalakrishna & Spafford consider NVD data on vulnerabilities in IIS, BIND, Lpd,
Sendmail, and RPC. They chose these five software systems because they have a
focused purpose (unlike operating systems), have been deployed at least 2 years,
are widely deployed, and have significant numbers of serious vulnerabilities. They
do not apply specific models to the data: rather, they discuss the theoretical and
practical requirements for doing so [GS05]. Gopalakrishna et al. later assess these
requirements for a number of different approaches to measuring vulnerabilities and
vulnerability discovery [GSV05].

3.4.3 Ozment and Schechter

In earlier work, I created and analyzed a data set of individually examined vulner-
abilities for the OpenBSD operating system [Ozm05; Ozm06]. I tested the fit and
predictive accuracy of more than a dozen SRMs against the data. With Stuart E.
Schechter, I analyzed a larger data set and concluded that the rate of vulnerability
discovery in OpenBSD is declining—for vulnerabilities introduced prior to a cut-
off date. In that same work, I looked at the rate of change in the source code of
OpenBSD [OS06b].

3.4.4 Colorado State University

Since 2005, researchers at Colorado State University have been investigating the use
of VDMs.

Alhazmi & Malaiya propose two models specifically for vulnerability discovery:
the Alhazmi-Malaiya effort-based model (AME) and the Alhazmi-Malaiya Logistic
model (AML) [AM05b].

Alhazmi-Malaiya effort-based model (AME)

The AME is an effort-based model, which approximates effort with the number of
users of a system. Alhazmi & Malaiya argue that the effort of vulnerability detectors
is related to the number of installations of the targeted software. However, they
provide no evidence for this assumption, and in the next section (3.5.1), I note some
reasons that it may not be true.

They find that this model has acceptable chi square goodness-of-fit to WinNT4
and Win98 data from the NVD [AM05b]. Furthermore, Sung-Whan Woo et al. suc-
cessfully fit this model to NVD data on all vulnerabilities found in Apache and IIS.
They then use the NVD taxonomy to break the vulnerabilities down into categories
and apply the models to the three largest categories; again, they find a good fit
[WAM06b]. However, none of this work has tested the model’s predictive accuracy.
Without such tests, this model must be considered unproven.
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Alhazmi & Malaiya logistic model (AML)

The AML is an S-shaped, time-based logistic model of vulnerability discovery. This
model assumes that vulnerability discovery occurs in three phases: learning, linear,
and saturation. The first phase is the initial, flat portion of the S-shape. In this
phase, detectors are still learning about the newly released software, so they do not
report many vulnerabilities. The linear phase is the steep portion of the S-shape:
detectors are familiar with the product and the number of vulnerabilities reported
grows linearly. The saturation phase is the final, flat portion of the S-shape: the
easiest vulnerabilities have been found, users are migrating to a newer version of the
product, detectors are less interested in the product, and the rate of vulnerability
reporting declines [AM05b].

Alhazmi & Malaiya find that the fitted model has acceptable chi square goodness-
of-fit for NVD data on five Windows operating systems (95, 98, XP, NT 4.0, and
2000) and two RedHat Linux operating systems (6.2 and 7.1) [AMR05]. Woo et al.
then find that the AML has acceptable goodness-of-fit to their NVD Apache and IIS
data. Using the NVD taxonomy, they break these two web servers’ vulnerabilities
down by category and apply the models to the three largest categories for each
server; again, they find a good fit [WAM06b]. These papers did not include results
on the model’s predictive accuracy.

Alhazmi & Malaiya do use average error and average bias to test the predictive
accuracy of the AML model on vulnerability data for Win98, Win2000, and RedHat
Linux 7.1 [AM06b]. They then propose a combined approach, the AML-C, that
uses known vulnerability densities from previous releases of the systems to discard
some of the extreme estimates produced by the AML. They find that the AML-C is
superior to the AML. However, they also found that the LVD model had the best
average error and average bias for the Win2000 data. It was a close second to the
AML-C for the RedHat 7.1 data and second to the AML-C for the Win98 data.
They argue that the LVD is a good fit for systems in which ‘saturation point’ in
vulnerability discovery has not yet occurred. The saturation point occurs when the
easiest vulnerabilities in a system have been discovered and the rate of discovery
thus decreases. Their AML model assumes the existence of such a point [AM06b].

They also test the predictive accuracy of the AML and AML-C on NVD data
from Apache 1 & 2 and IIS 4 & 5. They find that an adaptive approach im-
proves their results: they observe the errors made in past estimations and adjust
their current predictions accordingly [AM06a]. (Adaptive techniques were previ-
ously proposed for SRMs, where they were also found to be an improvement over
non-adaptive techniques [BCLS90].) Finally, Woo et al. assesses the goodness-of-fit
of the AML model on NVD vulnerability data, overall and categorized by type, for
IE and Firefox [WAM06a].

Table 3.1 summarizes the results of the Colorado State University work on
VDMs. It shows the predictive accuracy, as assessed by average error and aver-
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LVD AML AML-C
Data Set AE AB AE AB AE AB

Win 98† 29.1% 29.1% 43.8% -43.8% 20.1% -20.1%
Win 2k† 4.6% 4.6% 29.2% -29.8% 16.8% -15.5%
RH 7.1† 19.2% -4.0% 37.9% -5.3% 15.4% 6.3%

Apache 1.0 ‡ 29.9% -29.1% 52.5% 8.3% 29.8% -29.8%
Apache 2.0 ‡ 8.2% 8.2% 25.2% -25.2% 16.3% -10.7%

IIS 4.0 ‡ 60.0% 60.0% 20.3% -20.3% 18.9% -18.9%
IIS 5.0 ‡ 47.0% 47.0% 17.4% -17.1% 17.4% -17.0%
† Data in this row is from [AM06b]. ‡ Data in this row is from [AM06a].

Table 3.1: The accuracy of the predictions made by three VDMs, assessed by Average
Error and Average Bias. The prediction in bold is best for its data set.

age bias, of successfully fitted LVD, AML, and AML-C models applied to NVD data
on seven different software systems.2 The AML-C has the best average error for five
of the seven data sets. However, the best predictive accuracy it had was 15.4%, on
RedHat 7.1 data. In contrast, the simple linear model, LVD, had an average error
of 4.6% and 8.2% for the two models for which it was most accurate.

3.4.5 Other literature

Robert Brady et al. proposed a theoretical model of fault discovery that is based
on thermodynamics [BAB99]. In a later work, Ross Anderson used the model to
provide a theoretical bound of the effects of vulnerability discovery and remediation
on security [And02]. Anderson did not apply the model to any data. However,
Alhazmi & Malaiya find that it cannot be fitted to their Win 95, Win XP, or RedHat
6.2 data sets [AM05a].

3.5 VDM assumptions

Because VDMs are probabilistic tools, their usage is based on assumptions about
the data to which they are applied. These assumptions are often the same as those
made by SRMs, so researchers have assumed that they are also satisfied for VDMs.
Unfortunately, most of the existing work has failed to satisfy all of the necessary
assumptions. As a result, the validity of this work is uncertain. VDMs face par-
ticular challenges in satisfying four assumptions: time, operational environment,
independence, and static code.

2When applied to the Windows and RedHat data, the AML-C was restricted such that the

duration of the linear phase was ε1 < 2.63/AB< ε2. The ε values were chosen based on data from

previous versions of the system [AM06b]. The AML-C was restricted to 21 < 2.63/AB < 42 for the

Apache and IIS datasets [AM06a].
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3.5.1 Time and effort

The accuracy of both SRMs and VDMs reflects the accuracy of the data to which
they are applied. For example, software engineers usually prefer execution time to
calendar time for use with SRMs. However, obtaining accurate chronological data
for VDMs is made difficult by the nature of the detection process: many detectors
are external (not employed by the vendor). As a result, it is difficult to accurately
quantify the effort expended by detectors, their number, and their knowledge.

SRM best practices state that calendar time should be normalized for the num-
ber of individuals testing the software system [Lyu96]. For example, Jack and Jill
work together to find a vulnerability in one week of searching. If calendar time is
normalized for the number of individuals, then this vulnerability was detected after
two weeks of work. Two detectors working for one week is equivalent to one detector
working for two weeks.

Reality may be even more complicated: Jack, a novice detector, and Jill, a highly
skilled detector, worked varying hours, part time, to discovery a vulnerability.

The effort expended to discover a vulnerability is composed of the number of
detectors, their skill, and the number of hours they worked. Ideally, vulnerability
databases would include effort information with which to normalize the chronological
information.

Unfortunately, I am aware of no vulnerability database that includes such accu-
rate information about the effort expended to find each vulnerability. Alhazmi &
Malaiya propose an effort-based model and argue that system usage figures should
be used as a proxy for effort [AM05b]. However, there is no evidence that usage data
is a suitable proxy for the effort expended by detectors. The fraction of users who
are looking for vulnerabilities is not necessarily a fixed proportion of the total user
population. Furthermore, vulnerability detectors may choose to examine software
that is popular in their community or currently prominent in the media, so the ratio
of detectors to users may differ between programs and also across time.

This problem is unlikely to be solved. Vulnerabilities are often reported by
external detectors, so gathering detailed and accurate information on the effort they
expend is probably not possible. The best that VDMs can therefore achieve is
to model the discovery process given the vulnerability detection environment that
existed during the time modeled. If that environment changes, then we cannot rely
upon the model.

3.5.2 Operational environment

In order to be effective, SRMs require that the environment from which the data is
obtained (usually the testing environment) must be equivalent to the environment in
which the software will be utilized after deployment. However, many vulnerabilities
rely upon the adversary intentionally inputting abnormal data—data outside the
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bounds of a normal operational profile.
Theoretically, over a long period of time and the wide range of real world envi-

ronments, we can consider that the operational profile includes all possible input.
This perspective justifies the application of these models to vulnerabilities, but it
does imply that vulnerabilities may be detected more slowly than faults would be
detected. Furthermore, pre-release VDMs will thus likely be less accurate than
pre-release SRMs.

In addition, chronologically local ‘spikes’ in the number of vulnerabilities found
may indicate the discovery of a new technique for detecting vulnerabilities. The
discovery of a new technique is conceptually equivalent to an expansion of the op-
erational profile.

3.5.3 Independence

An additional assumption underlies almost all VDMs: that vulnerability discoveries
occur independently. However, there is reason to doubt that they do.

Gopalakrishna & Spafford consider NVD data on vulnerabilities. They classified
these vulnerabilities using both the NVD and the Taimur Aslam et al. [AKS96]
classification systems. Interestingly, they find that in one-third of the instances in
which “two successive vulnerabilities are considered in a software product, they are
of the same type.” This result lead them to believe that vulnerability discovery
is not independent, although the result may be skewed by the fact that half of
the vulnerabilities are in the same category: input validation errors. They next
apply a run test to determine data independence and find mixed results: for each
different product, vulnerability discovery in some categories is dependent; in others
it is independent [GS05]. This finding indicates that any modeling effort should first
test to see whether the vulnerability data is independent.

If vulnerability data is dependent, it may be because vulnerability hunters are
looking for other instances of the same type of vulnerability that has just been
discovered—and developers may repeat the same type of mistake. For example, a
developer may always perform a copy of size LENGTH into a buffer when that buffer
is actually one byte smaller than LENGTH. Detectors are thus rewarded for looking
for other or similar instances of the same type of vulnerability. Other, non-security
related, faults may be introduced in the same way. However, SRMs are usually
applied to failure data obtained during automated testing: as a result, the discovery
of these faults is independent [MIO87].

It may instead be possible to apply VDMs to vulnerability detection events:
an independent act of detection that may result in the discovery of multiple instances
of dependent vulnerabilities. The previous paragraph describes a hypothetical pro-
gram in which a copy of size LENGTH is always and erroneously performed. In
this example, each time this copy is performed in the source code it constitutes a
vulnerability, but the discovery of these multiple vulnerabilities can be lumped into
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a single detection event.
The VDM literature has inadequately considered this problem. Rescorla [Res05]

states his assumption of independence but does not test it. In my previous work,
I acknowledge the problem and attempt to construct a data set of vulnerability
detection events [Ozm05; Ozm06; OS06b]. In that work, however, I did not test
for independence. (I do so in Chapter 7, below.) The Colorado State University
literature does not address the question of independence at all.

This problem is not limited to the VDM literature. Katerina Gos̆eva-Popstojanova
& Kishore Trivedi note that many SRMs are applied to fault data that may not be
independent, and they argue that models are needed that do not rely upon this
assumption [GPT00].

3.5.4 Static code

Most SRMs and VDMs assume a static code base.3 However, software rarely remains
static for long: patches are applied to fix faults, remediate vulnerabilities, and add
features. If the data to which the VDM is applied doesn’t contain adequate release
or patch information, then the model can be confounded by changes to the code
base.

For example, Woo et al. initially lump together the vulnerabilities released in
IIS 4 & 5 into one data set and vulnerabilities released in Apache 1 & 2 into an-
other [WAM06b]. This work thus fails to consider whether vulnerabilities are being
introduced into the software even as they are being removed. In a later work, some
of the same authors divide those data sets by version, into IIS 4, IIS 5, Apache 1,
and Apache 2 [AM06a]. Again, however, this granularity is insufficient. IIS has had
patches and service patches added to it. ‘Dot’ revisions to Apache, such as from
2.0 to 2.1, are equivalent to integer revisions to IIS: they introduce significant new
features and changes. Both of these works thus apply VDMs to a changing code
base.

The remainder of the literature is mixed with respect to this assumption. Rescorla
considers operating systems by version but ignores patches and service patches
[Res05]. Most of the other work from Colorado State University does the same
[AM05a; AM05b; AM06b]. However, my previous work does take the changing code
base of modern systems into consideration: I examine each vulnerability in the data
set to ascertain exactly when it was introduced [Ozm05; Ozm06; OS06b].

3One exception is the B&M Binomial SRM, which assumes that patches are applied and may

introduce new faults at a fixed rate [AIA93].
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3.6 Guidelines for VDM research

One way to address the problems of existing work is to compile a list of best practices
to be used in VDM research. I propose that future work should, at a minimum:

1. Define its terms, including: vulnerability, VDM, and detection event.

2. Clearly state the assumptions on which the model depends.

3. Ensure that the data examined is for a single version of the system.

4. Test the data for independence and then choose a model based upon that
result.

5. Acknowledge those assumptions that may not be perfectly met, like constant
effort, and consider how those assumptions may drive the results.

6. Assess both one-step-ahead and final-count predictive accuracy.

7. Publish the data, at least online, so that others can replicate the work and use
it to test their own models.

3.7 Conclusion

VDMs hold promise for providing useful information to vendors, users, and cus-
tomers. However, this research is unlikely to provide robust results unless the short-
comings described here are remedied.

Almost all of the existing work on VDMs, including my own, has inadequately
noted and abided by the models’ assumptions. Research efforts have failed to: ac-
knowledge the possibility of dependence in vulnerability discovery [AM05a; AM05b;
AMR05; AM06a; AM06b; WAM06a; WAM06b], test for dependence [Ozm05; Ozm06;
OS06b], and only apply the models to static code [AMR05; WAM06b]. Other efforts
have failed to test models’ predictive accuracy [Res04; AM05a; AM05b; AMR05;
WAM06b].

The next chapter highlights another important consideration for VDM research:
ensuring that the data used are accurately and consistently gathered.
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Chapter 4

Collecting Vulnerability Data

The accuracy of VDMs—and any other statistical analysis of vulnerabilities—relies
upon the accuracy of the vulnerability data to which they are applied.

The reliability engineering literature generally assumes that SRMs have been
applied during pre-release testing and in settings where the collection of failure data
is an integral part of the testing environment. Unfortunately, vulnerabilities are
unlikely to be identified as such in that stage of software development: if they are
found at all, they will probably be perceived simply as quality faults. As a result,
vulnerabilities may be most often detected as such after the product is released,
when the collection of precise data is much more difficult.

Vulnerability research is frequently based upon public vulnerability databases.
The National Vulnerability Database (NVD)1 is the database used for almost all of
the research on VDMs: for example, it was used by Rescorla [Res05], the Purdue
University work [GS05; GSV05], and the Colorado State University work [AM05b;
AMR05; AM06a; AM06b; WAM06a; WAM06b].

However, the NVD was not designed with vulnerability discovery modeling in
mind, and it therefore has four important shortcomings for this purpose: chronolog-
ical inconsistency, incomplete inclusion, multiple entries for a single detection event,
and lack of documentation.

4.1 Problems with using the NVD for VDMs

The NVD was not designed for the purpose of employing VDMs; it was not even
designed with the goal of high-quality statistical analysis. Instead, the NVD helps
accomplish “the mandate to warn the public about vulnerabilities in computer sys-
tems;” it does so “by offering official vulnerability information on all known computer
vulnerabilities” [NISa]. The problems I describe below have arisen because the NVD
is being used for a purpose outside of its mandate.

1The NVD was formerly known as ICAT.
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4.1.1 Chronological inconsistency

The NVD has inadequate information on the chronological information most impor-
tant to the use of VDMs: when the vulnerable code was first released and when the
vulnerability was discovered.

Version information

The NVD currently has a data field called ‘vulnerable software and versions.’ From
2001 to 2005, information in this field was “obtained from various public and pri-
vate sources. Much of this information is obtained (with permission) from CERT,
Security Focus, and ISS X-Force” [ICA02]. The NVD does not describe how they
currently obtain this information.

The goal of this field is to notify users when they are relying upon vulnerable soft-
ware [ICA02]. It may thus omit obsolete versions of the software that are nonetheless
vulnerable. For example, the detector of a vulnerability may test it against only the
most current version of a program. Detectors and vendors are rarely interested in
whether or not a vulnerability applies to old, no longer supported versions of the
software.

As a result, this field is not an accurate source of information on when a vul-
nerability was released. Unfortunately, VDM research has often used it as such:
researchers identify the earliest listed version of the software and assume that the
vulnerability was introduced in that version. The release date for the vulnerability
is then given as the date on which that version of the software was introduced.

This inaccuracy can result in two types of errors. First, vulnerabilities can appear
to be younger than they actually are: their release date is based on a more recent
version than the one in which they were truly released. This error can cause models
to indicate a more rapid time to discovery than is actually the case. Second, software
versions can seem to be more secure than they actually are: it appears that no recent
vulnerabilities have been found in obsolete versions of the software, when in reality
those versions were just not tested when vulnerabilities were discovered. This error
can cause models to indicate that the version was more rapidly depleted or contained
fewer vulnerabilities than is actually the case. Alhazmi & Malaiya have applied
VDMs to NVD data on a number of operating systems [AM05b; AM05a; AM06b].
Unfortunately, they do not mention the chronological inconsistencies in the NVD
that were described in Section 4.1.1, above. As a result, we cannot ascertain whether
the satiation phase they find is due to a decrease in the number of vulnerabilities
reported or to a failure of the NVD to include the pertinent operating system as
affected.
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Discovery date

The date on which a vulnerability is discovered is also only approximately recorded
in the NVD as the ‘original release date.’ For vulnerabilities added before 2001, the
NVD reports a “published before” date; after 2001, it reports the date on which the
vulnerability was added to the NVD [ICA02]. Both approaches may be inaccurate
by several months. Of the literature that relies upon the NVD, only the work by
Rescorla [Res05] and Gopalakrishna & Spafford [GS05] notes this change.

Furthermore, even if the vulnerability is added to the NVD on the same day that
it became public, that date may greatly differ from the actual discovery or disclosure
date. Some vendors work on vulnerabilities for months or even years before they
release a patch and the vulnerability becomes public [Ozm05]. As a result, the
“published before” date may be inaccurate by over a year.

4.1.2 Inclusion

Another drawback of the NVD is that it does not necessarily contain every vul-
nerability detected in a software system. It contains only those vulnerabilities that
have been assigned Common Vulnerability and Exposure (CVE) identifiers; many
vulnerabilities that predated the creation of the CVE list in September 1999 have
never been assigned CVE identifiers.2 Even after that date, not all vulnerabilities
recorded by the vendor or other databases, such as Bugtraq, are included.

4.1.3 Separation of events

For the purposes of vulnerability discovery modeling, perhaps the most significant
shortcoming of the NVD is that its entries are sometimes vulnerabilities and some-
times vulnerability detection events. This inconsistency is actually in the CVE list.
The NVD simply has one entry for every CVE identifier.

This shortcoming is perhaps due to the field’s lack of a widely accepted definition
for ‘vulnerability.’ The definition proposed in Section 2.2 clarifies this situation by
specifically stating that a vulnerability is a single instance of a mistake.

If multiple vulnerabilities are discovered at the same time, by the same indi-
vidual, then their discovery is unlikely to be independent. The detector probably
discovered one vulnerability and then looked for similar instances of it in similar ar-
eas. If the CVE assigns the different vulnerabilities different CVE identifiers, than
any VDM using the NVD data will be modeling dependent events.

2The CVE list is an initiative to provide a single, widely accepted name to vulnerabilities. Rather

than a database of information about a vulnerability, it simply provides a universal identifier for

that vulnerability [MIT05]. CVE identifiers are an important tool for ascertaining when entries in

different databases refer to the same vulnerability.
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4.1.4 Documentation

Another challenge with using the NVD for vulnerability modeling is its lack of
documentation. Other than a short list of frequently asked questions, there is very
little information available about how the data is collected, what information is
recorded, and how the process has changed over time. The database has indeed
changed over the past decade, and these changes are inadequately documented for
the purposes of VDMs.

For example, the current site does not contain a description about the cate-
gorization scheme for vulnerabilities: there is not even a listing of each category.
Furthermore, there is no mention of how the date recorded as the ‘original release
date’ or ‘published before’ date has changed over time. The only way to discover
some of this information is through the Internet Archive’s stored historical snapshots
of the site [ICA02].

Using the NVD for a long-term analysis of data is thus problematic: the meaning
of the fields may change without notice.

4.2 Other public vulnerability databases

The NVD is not the only public vulnerability database, although it is the database
used by the remainder of the VDM literature. In addition to the NVD, some of the
more prominent databases include: Bugtraq (run by the same organization as the
Bugtraq mailing list) [Sec05], ISS X-Force [XFed], and the Open Source Vulnerability
Database (OSVDB) [OSVed]. These diverse databases often, but not always, have
overlapping data. They may suffer the same shortcomings described above.

4.3 Next generation vulnerability database

Before we can assess the utility of VDMs in measuring software security, we need an
accurate source of data: we need a next generation vulnerability database. In this
section, I propose some requirements for that database.

Any next generation vulnerability database should include as much of the event
data listed in Section 2.5 as possible: the injection, release, detection, disclosure,
public, patch, and scripting dates. Each field should also contain a note indicating
the precision of the date: e.g. approximate to within three weeks. Because most of
this information will have been found on the internet, each date should also have
any evidentiary URLs and the dates of that evidence associated with the entry.

One important act for such a database is to distinguish between vulnerabilities
and vulnerability detection events: it should list both. It should also contain links to
pertinent entries in other databases (as is commonly done in the databases discussed
here). It should include a ‘different from’ field to help distinguish similar yet different
vulnerabilities and detection events. In addition, the database should include copies

Andy Ozment Vulnerability Discovery & Software Security



Ch. 4: Collecting Vulnerability Data 43 of 139

of the moderators’ discussions. Understanding how and why moderators decided to
separate a vulnerability detection event is often useful.

Any public database of vulnerabilities must be maintained for years before it can
be useful for VDMs. Such a database is likely to evolve over time. As a result, any
public database should also document:

• Each data field: how the data is obtained and how accurate it is.

• Changes to the process, information, or fields that may occur during the life-
time of the database.

• The date on which versions of software are no longer tested to see if they
contain a vulnerability.

This information will enable the research community to gain a better under-
standing of vulnerabilities, how they are found, and how their prevalence changes
over time.

4.4 Conclusion

The existing VDM literature almost universally relies upon inconsistent and inaccu-
rate data from public vulnerability databases, which were never intended to be used
for this purpose. That data does not necessarily represent vulnerability detection
events, which are what current VDMs are capable of modeling (the VDMs used in
the literature are not appropriate for modeling vulnerabilities whose discovery is de-
pendent). The accuracy of VDMs depends on the data to which they were applied:
we cannot better model vulnerability discovery until we have a database designed
with this usage in mind. The security community should design and implement
a next generation vulnerability database to provide the high-quality data that we
need.
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Chapter 5

The OpenBSD Data Sets and

Methodology

The VDM work by other research groups has relied upon data from the NVD.
However, Chapter 4 described the problems with this data set. In order to ascertain
whether VDMs could be accurately applied to vulnerability data, I first had to
obtain an accurate data set. Because no such set could be found, I decided to
collect accurate vulnerability data for a single system.

5.1 Selecting a system to study

I chose to study OpenBSD because it is open source, long-running, consolidated,
and security-focused.

In order to obtain precise, accurate information on vulnerabilities, I needed access
to the system’s source code. As a result, I only considered open source software as
potential sources of data. OpenBSD fit this requirement: its source code and change
history are readily accessible via a publicly accessible CVS repository.1

OpenBSD is also consolidated: unlike Gnu/Linux, there is a reasonably clear
delineation between the portions of the system that are OpenBSD and the portions
of the system that are external contributions. I refer to the former as ‘OpenBSD’
and, following common usage, the latter as the ‘ports’ collection. Gnu/Linux, while
more widely used, also has the shortcoming of being fragmented into a large number
of distributions.

Finally, OpenBSD is security-focused: its developers started the project with
the goal of creating a more secure operating system. They have invested significant
effort into code audits, secure practices, and security features [Ope98]. Prompted by
Rescorla’s intriguing work on the social utility of non-vendor vulnerability detection

1CVS is an example of a version control system. Such a system enables multiple individuals to

change a single set of files without over-writing each other’s work. It also tracks and credits the

changes to each file, so the evolution of the source code can be ascertained.
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[Res04], I wanted to know whether the rate of vulnerability discovery was declining in
a widely used operating system. I therefore sought to test a system whose developers
focused on finding and removing vulnerabilities: if I had found no decline in the rate
of vulnerability reporting for this system, then less security-focused systems would
presumably have the same outcome. My analysis of the detection event rate in
OpenBSD is presented in Chapter 9.

5.2 Compiling the OpenBSD vulnerability data set

The initial release of OpenBSD was version 2.0; this version was forked from NetBSD
1.1 in late 1996. Prior to version 2.2, the OpenBSD developers performed an exten-
sive security audit and repaired numerous vulnerabilities without reporting them.
As a result, I could not obtain good vulnerability data for the releases prior to 2.2.
In addition, in version 2.3 the OpenBSD team changed the way they integrated X11
into the code base.

I therefore selected version 2.3, released on 19 May 1998, as the earliest ver-
sion for the data set: it was the first truly stable release in which vulnerabilities
were consistently documented. I refer to this version as the foundation version,
and I refer to code and vulnerabilities present before the release of this version as
foundational code and foundational vulnerabilities.

The OpenBSD project releases a new version approximately every six months,
incrementing the version number by 0.1. This data set incorporates the eighteen
versions of OpenBSD from 2.3 to 4.0, inclusive.

5.2.1 Vulnerability data collection

The OpenBSD vulnerability data set was created through the following process:

1. I compiled a database of vulnerabilities detected in the 8 years between 19
May 1998 and 19 May 2006. I examined every vulnerability listed on the
OpenBSD security web page; I used four public vulnerability databases to
obtain additional information on those vulnerabilities: NVD [NISb], Bugtraq
[Sec05], OSVDB [OSVed], and ISS X-Force [XFed].

2. I examined CVS records and the source code to detect the date on which a
correction for the vulnerability was first checked into the CVS repository. If
the fix was itself faulty, the date of the first repair effort is used because it most
closely tracks the date of discovery. I also examined the public vulnerability
databases for information on when the vulnerability became public. I then
selected the vulnerability’s date known: the first date for which evidence of
the vulnerability’s existence is available.2

2The release of a public report and the repair of the vulnerability do not always occur in the

same order. When a vulnerability is reported to an entity other than the OpenBSD development
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3. I manually examined prior versions of the source code to detect the vulnera-
bility’s injection date. If there was any doubt, the earliest possible date was
chosen. Using that information and other CVS records, I was then able to
ascertain the vulnerability’s release date.

Not all vulnerabilities could be easily and precisely categorized: the process was
manual, time-consuming, and laborious. Below, I describe the decisions I made with
respect to inclusion and uniqueness.

5.2.2 Which vulnerabilities are included?

I included vulnerabilities that I believed to be applicable to the bulk of OpenBSD’s
installed base. I therefore excluded vulnerabilities that were specific to processor
architectures other than the x86. I also excluded vulnerabilities that were loca-
tion/country dependent. In addition, I excluded reports of vulnerabilities in histor-
ical versions of OpenBSD if the release that was current at the time of the report
was not vulnerable.

My analysis covers all portions of the OpenBSD code in the primary CVS repos-
itory. This includes the X-windowing system, the Apache web server, and many
additional services not traditionally considered to be part of the core operating
system. However, this repository excludes the ‘ports’ collection of third-party soft-
ware that is not officially part of OpenBSD. I included vulnerabilities regardless of
whether or not they applied to the default configuration of OpenBSD. (A default
configuration in which most services are disabled is another commendable aspect
of OpenBSD’s security policy; however, in practice, many of those services will be
enabled by the users.)

5.2.3 Lack of information on third-party subsystems

OpenBSD includes some software that is maintained by third parties (e.g. sendmail).
Those third parties often release new versions of their software that bundle together
fixes for multiple (previously secret) vulnerabilities. Unfortunately, the third party
vendors do not always make available the information necessary to detect the release
and discovery date of the component vulnerabilities. I was thus sometimes unable
to obtain access to the data necessary to establish the relevant dates for each vul-
nerability and detection event. As a result, some detection events in the data set
have the same release date or date known, even though in reality the vulnerabilities
in these detection events may have been injected or discovered at different times.

team, the date of the public report often precedes the date on which a repair is committed to the

CVS. When a vulnerability is reported directly to the OpenBSD development team, they usually

commit a repair into the CVS repository prior to publicly announcing the vulnerability. I utilize

the earlier of the two dates so that I most closely approximate the actual discovery date.
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5.2.4 What constitutes a unique vulnerability?

I used the data available in the public vulnerability databases and in other public
sources to ascertain whether or not a group of vulnerabilities were discovered in the
same vulnerability detection event. For example, I sometimes found announcement
emails by the detector stating the process by which the vulnerabilities were discov-
ered. If the vendor credited the same individual for discovering the vulnerabilities
and reporting them at once, I considered each of those vulnerabilities to have been
in the same detection event if they are of the same type (using the custom taxonomy
described in Section 6.3). If the detection event contains multiple vulnerabilities,
then the detection event’s release date is that of the earliest released vulnerability.
Only a handful of detection events contained vulnerabilities with different release
dates. By definition, all of the vulnerabilities in a detection event share the same
date known.

5.3 Results

Table 5.1 shows the number of vulnerabilities that were released and became known
in each version of OpenBSD. The version in which the vulnerability was released
is specified by the column. The version in which the vulnerability became known
is specified by the row. The first column contains a total of 97 vulnerabilities that
are foundational: they were introduced before the start of the study and were thus
present in the code of the foundation version, 2.3. The top entry in that column
indicates that 7 vulnerabilities became known during the six months between the
release of version 2.3 and the release of 2.4.

The bottom row of Table 5.1 also shows the number of lines of code, in millions,
that were altered/introduced in each release until version 3.7 (see Chapter 8 for the
methodology used to obtain this information).

The most startling result shown in Table 5.1 is that 63% of the 155 detection
events that occurred during the study contained foundational vulnerabilities. This
result does not necessarily imply that the code added in OpenBSD 2.3 was particu-
larly insecure. It may instead mean that the historical code base, which could date
back to the early 1980s, still dominates the overall code base.

5.4 Conclusion

The OpenBSD vulnerability data set contains accurate information on the exact
dates on which vulnerabilities were injected, released, and became known. The next
step in understanding the security of the OpenBSD software is to taxonomize the
detection event data in order to test for dependence in the vulnerability hunting
process.
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Version in which the vulnerability was first released

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 Total
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2.3 7 7
2.4 11 0 11
2.5 6 0 1 7
2.6 5 1 0 0 6
2.7 12 2 2 2 2 20
2.8 11 1 0 1 3 0 16
2.9 3 0 0 2 0 0 0 5
3.0 2 1 0 0 1 0 2 0 6
3.1 9 2 1 2 0 0 0 1 1 16
3.2 7 3 0 0 0 0 1 2 0 1 14
3.3 2 2 0 1 0 0 0 0 0 1 2 8
3.4 3 0 0 0 1 0 1 0 1 0 0 0 6
3.5 13 2 1 0 0 0 0 2 0 1 0 0 1 20
3.6 2 0 1 0 0 0 0 0 0 0 0 0 0 0 3
3.7 1 1 0 0 1 0 0 0 0 0 0 0 2 0 0 5
3.8 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3
3.9 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2
4.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 97 15 6 9 8 0 4 5 2 3 2 1 3 0 0 0 0 0 155

MLOC 10.1 0.4 0.3 1.1 0.8 0.4 2.2 0.6 0.8 0.3 0.3 0.8 1.4 0.7 0.9

Table 5.1: The number of OpenBSD vulnerabilities according to the version in which
each was released and the version current at the time each was patched. The fi-
nal row, at the bottom of the table, shows the count in millions of lines of code
altered/introduced in each version prior to 3.8.
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Chapter 6

Vulnerability Types and

Taxonomies

A key consideration for vulnerability discovery modeling is whether or not vulner-
ability discovery is an independent process. However, we cannot test for indepen-
dence unless we have somehow categorized the vulnerabilities. A dependent process
is one in which detecting a vulnerability somehow triggers the discovery of another
vulnerability—and the sequential discovery of similar vulnerabilities is one clue that
the discovery of the first led to the discovery of the second. In order to ascertain
‘similarity,’ I categorize the vulnerabilities according to two taxonomies.

Here, I discuss the literature on vulnerability taxonomies. I then describe the
taxonomy used by the NVD and thus used by most VDM research. I apply the NVD
taxonomy to the OpenBSD dataset. Next, I describe a custom taxonomy created
specifically for this dataset and apply it to the OpenBSD data.

6.1 Existing vulnerability taxonomies

Selecting a taxonomy to use when analyzing vulnerabilities is a difficult task. A
number of different taxonomies exist; indeed, numerous philosophies of taxonomy
are competing in this area. At the most comprehensive end of the spectrum, tax-
onomies attempt to place vulnerabilities in categories that are: mutually exclusive,
exhaustive, unambiguous, repeatable, accepted, and useful [Amo94, 34]. Require-
ments like this can lead to a taxonomy with only three or four categories: formally
correct but not very useful. At the other end of the spectrum are those taxonomies
based on categories that seem to arise naturally from the databases themselves.
These taxonomies tend to be formally weak: often, a vulnerability can fit into mul-
tiple categories. Their focus is usually simply on being useful for a narrow analysis
or task. Existing databases tend to be categorized according to this latter type of
weak taxonomy.

Carl Landwehr et al. create a taxonomy of vulnerabilities with the three high
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level categories of how, when, and where - genesis, time of introduction, and location.
Each category is further subdivided multiple times. For example, genesis, is further
divided into intentional and inadvertent. The most fine-grained categories within
genesis include trojan horse, trapdoor, logic/time bomb, covert channel, and ‘other.’
The purpose of this taxonomy is to aid in the automation of vulnerability detection
and the general improvement of the software engineering process. The authors also
include a sample of fifty vulnerabilities, categorized according to their taxonomy.
Their examples are from a wide variety of operating systems and are thus interesting
for their diversity when compared to more current examinations of vulnerabilities
[LBMC94].

Matt Bishop creates a taxonomy with the goal of helping software engineers fix
existing and avoid creating new vulnerabilities. His taxonomy has six separate axes:
the nature of the vulnerability (using the categories from a previous system, the
Protection Analysis project), time of introduction, exploitation domain (user domain
in conjunction with network and/or physical resources), effect domain, minimum
number of components necessary to exploit it, and the source of the vulnerability
information. He discusses broad classes of vulnerabilities which his taxonomy can
help detect and then applies this taxonomy to a number of UNIX vulnerabilities
[Bis95].

Taimur Aslam et al. create a taxonomy with only two high-level categories: cod-
ing faults (synchronization errors or condition validation errors) and emergent faults
(configuration errors or environment faults). They derive their taxonomy from soft-
ware testing tools and techniques and the results that are typically produced. They
created a database of faults, which was used in the development of an intrusion
detection system. Unfortunately, the minimal number of categories seems to limit
the utility this taxonomy provides for software engineering education or process
improvement [AKS96].

Matt Bishop & David Bailey survey three existing taxonomies of vulnerabilities,
including Aslam [AKS96]. Each of these taxonomies is criticized for failing to define
a unique category for each vulnerability. Using as examples the xterm and finger

vulnerabilities, they demonstrate that multiple categories in each taxonomy could
be assigned based on the level of abstraction and the perspective (attacker, process,
operating system, etc.) from which the vulnerability is considered [BB96].

John Howard & Thomas Longstaff develop a high level ‘common language’ of
definitions and taxonomies to better enable the collection and exchange of informa-
tion about computer security incidents. They focus on a high level set of terms,
believing that they can better find and create agreement with these terms than with
more specific, lower level terms. Their hope is that the lower level terms will then
be defined with the higher level terms thus created [HL98].

David Baker et al. describe the motivation for creating the Common Vulner-
abilities and Exposures (CVE) list. They then elaborate on the lessons learned
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in its initial years. They particularly highlight the challenges of developing a full
taxonomy as a reason for focusing on assigning canonical names alone in the list
[BCHM01]. In another practical paper, L. Ma et al. describe their motivation for
creating a collaborative vulnerability database for use internally at CERT/CC and
describe some of the lessons they have learned from the experience [MMSM03].

Accepting that no single taxonomy will be sufficient for all uses, Frank Piessens
designs one that highlights the cause of the vulnerability in order to help software
engineers prevent future instances of it. The higher level of his taxonomy thus cor-
responds to the phase of the software engineering process in which the vulnerability
was first introduced: analysis/specification, design, implementation, deployment, or
maintenance. Each higher level category has a number of lower level categories for
further refining the classification (each also has a lower level category that is essen-
tially for ‘miscellaneous’ vulnerabilities). He concludes that his taxonomy is useful
for educating developers, for testing, and for audit [Pie02]. However, Piessens’ tax-
onomy does not seem to be used in any large database. It suffers from the problem
that real-world vulnerabilities will be highly concentrated in only one of his nine-
teen low-level categories. That category, ‘insufficiently defensive input checking,’
will contain both buffer overflows and input string vulnerabilities.

Shuo Chen et al. analyze the Bugtraq database on security vulnerabilities and
reach three conclusions: an exploit is composed of multiple ‘elementary activities’
and can be foiled at any of these, exploits require multiple operations on multiple
vulnerable objects, and analyzing vulnerabilities can result in detecting predicates
necessary to achieve security. They then develop a finite state machine modeling
technique by which vulnerabilities are composed of a number of primitive finite state
machines. Finally, they use these primitive finite state machines to model existing
vulnerabilities and detect a new vulnerability. For their Bugtraq analysis, they use
the taxonomy that is part of the Bugtraq database. Unfortunately, this taxonomy
is not well applied: they note several instances when the same coding mistake is
classified in a number of different taxonomy categories [CKXI03]. In a separate,
although related work, Chen et al. present a more detailed analysis of the vulnera-
bilities recorded in the Bugtraq database. They combine this information with an
examination of source code to detect and analyze the prevalence of vulnerabilities
in application code versus operating system code. They also draw inferences as to
the trustworthiness of various operating systems. Finally, they examine SNORT
intrusion alert databases to detect the most common alerts raised by that IDS in
real world situations [CKI03]. The Bugtraq taxonomy is similar to that of the NVD.

6.2 The NVD classification

The NVD’s system is not an attempt at a formal taxonomy: it allows vulnerabilities
to be in more than one category and some vulnerabilities may not fit in any category.
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Despite these shortcomings, this system is widely used in the literature: the
VDM research both from Purdue University and from Colorado State University has
relied upon the NVD categories [GS05; WAM06b; WAM06a]. I therefore applied
this system to the OpenBSD dataset in order to more readily compare it with this
other literature.

The NVD classifies each vulnerability within the categories shown below [ICA02].
Unfortunately, the NVD system uses the term ‘error’ in the title of most of its cate-
gories. This usage is contrary to the standard definition used in software engineering;
a better term would have been ‘fault’ (see Section 2.1).

• Access Validation Error (AVE): The access control system is faulty, not
just misconfigured.

• Configuration Error (CE): Caused not by “how the system was designed
but on how the end user configures the system. We consider it a configuration
error when a system ships from a developer with a weak configuration.”

• Design Error (DE): “there exists no errors in the implementation or config-
uration of a system, but the initial design causes a vulnerability to exist.”

• Exceptional Condition Handling (ECH): The system fails to safely han-
dle an exceptional condition.

• Environmental Error (EE): Caused by the system’s environment. An ex-
ample is “an unexpected interaction between an application and the operating
system or between two applications on the same host.” The “installation en-
vironment somehow violates the developer’s security assumptions.”

• Input Validation Error (IVE): A system does not properly check its input
and thus can be exploited by malicious/malformed input. This is the catch-all
category for input validation vulnerabilities that do not fit either of the next
two categories.

– Boundary Condition Error (BCE): Input can cause the system to
“exceed an assumed boundary.” “For example, the system may run out
of memory, disk space, or network bandwidth.” Integer overflows and
divide by zero are also included in this category.

– Buffer Overflow (BO): Stack and heap buffer overflows.

• Not Classified (NC): For vulnerabilities that were either not classified or
were considered to not fall into any category.

• Race (R): A race condition involving a security check. E.g., changing the
environment in the time between a security check and the approved operation.

I have applied the NVD classification system to the OpenBSD dataset. When
possible, I have used the category provided by the NVD itself. If a detection event
is not in the NVD, then I have categorized it according to the descriptions above.
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Version in which the vulnerability was first released
Type 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 All

NC 12 2 1 1 16
AVE 9 1 10
BCE 8 2 2 1 1 1 15
BO 31 3 4 3 1 1 1 1 1 1 1 48
CE 3 1 2 6
DE 11 7 1 1 3 1 2 1 1 28
ECH 8 1 2 1 1 1 14
EE 3 1 1 5
IVE 10 1 1 1 1 1 1 16
R 10 1 11

Total 105 16 6 11 8 0 5 5 3 4 2 1 3 169

Table 6.1: The number of OpenBSD detection events of each type in the NVD classi-
fication system, by version. A single detection event may be counted under multiple
types, so the totals may differ from those in Table 5.1.

However, I have left those entries that the NVD categorized as not classified (NC)
unchanged.

Table 6.1 shows the breakdown of the OpenBSD vulnerability detection events
into the NVD categories, by version. Each entry indicates the number of detection
events of that type and release version. For example, the fifth row of the second col-
umn indicates that there were 31 detection events containing buffer overflow (BO)
vulnerabilities with a release version of 2.3. The total number of vulnerability detec-
tion events in each version differs from that shown in Table 5.1, because detection
events may be classified in multiple categories. The table does not include ver-
sions more recent that 3.5: all of the vulnerabilities detected during the study were
released in version 3.5 or earlier. I have thus excluded from the table the blank
columns for later versions.

The most frequent type of vulnerability detection event was buffer overflows
(BO): 48 of the total of 169 classifications. The second most frequent type was
design errors (DE), with 28 detection events classified in that category. Several
types apply to 14–16 detection events: not classified (NC), boundary condition errors
(BCE), error condition handling (ECH), and input validation errors (IVE). The least
frequently assigned categories were environmental errors (EE) and configuration
errors, with five and six respective detection events.

Table 6.1 shows the number of vulnerability detection events of each type by
version. Another way of considering this data is by the date known. Are there
trends in the type of vulnerabilities detected over time?

Figure 6.1 shows the OpenBSD vulnerability detection events according to both
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Figure 6.1: Vulnerability detection events’ types in the NVD classification system vs.
their date known. A single detection event may be shown as having multiple types.

category and the date known. Circles at the same position on the vertical axis
represent detection events with vulnerabilities of the same type. The location of the
categories on the vertical axis is alphabetical, with those not classified (NC) at the
bottom. For example, the first detection event in the study, in mid-1998, contained
vulnerabilities categorized as buffer overflows (BO). It is shown as the leftmost circle
on the figure, vertically aligned with the label BO on the left.

The figure shows that buffer overflows (BO) were detected regularly throughout
the study. In contrast, environmental errors (EE) and configuration errors (CE)
were detected only occasionally and mostly in the first half of the study. The ‘not
classified’ (NC) category was assigned mostly to vulnerabilities detected early in
the study. This usage is probably because those entries were added to the CVE
list retrospectively: knowledge of their existence predated the existence of the list.
Boundary condition errors (BCE) were detected more frequently in the latter half
of the study, because integer over/underflows became known and more prominent
during this period.

6.3 The custom OpenBSD dataset classification

I have also created a classification system specifically for the OpenBSD dataset.
Starting with the NVD system, I created additional categories whenever there were
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three or more similar vulnerabilities. I do not propose this classification system for
general use; it is intended only to reveal possible patterns in vulnerability discovery
in OpenBSD.

The OpenBSD vulnerability classification uses all of the categories from the NVD
database. In addition, it includes the following categories:

• Coding Mistakes (CM): a catch-all category encompassing mistakes not at
the design level but at the implementation level.

• Design Error, Interaction (DEI): a design mistake caused by the unantici-
pated interaction of different programs. It is a subset of Environmental Errors
(EE); in my OpenBSD classification system, EE is reserved for vulnerabilities
caused by environmental variables.

• File Handling / File System (F): related to the use of temporary files or
the program’s interaction with the file system.

• File Descriptor (FD): related to or caused by the use of file descriptors.

• Format String (FS): caused by using unvalidated user input as a format
string parameter.

• Heap Corruption (HC): caused by a double free, memory leak, or some
other mistake related to the (mis)allocation of memory on the heap.

• Integer Overflow/Underflow (IOU): caused by an integer over/underflow.

• Null Pointer De-reference (NPD): caused by an attempt to de-reference
a null pointer.

Table 6.2 shows the breakdown of the OpenBSD vulnerability detection events
into these custom categories, by version. This table is the same as Table 6.1, except
the categories used are from my custom OpenBSD taxonomy. Each entry indicates
the number of detection events of that type and release version. The total number of
detection events in each version differs from that shown in Table 5.1, because detec-
tion events may be classified in multiple categories. The total number differs from
that shown in Table 6.1 because detection events may be classified in only a single
category in one taxonomy but in multiple categories in the other taxonomy. Again,
the table does not include versions more recent that 3.5: all of the vulnerabilities
detected during the study were released in version 3.5 or earlier.

As with the NVD system, the most frequent type of vulnerability detection event
was buffer overflows (BO): 50 of the total of 169 classifications. Unlike the NVD
system, the other categories contain relatively few detection events (fifteen or fewer).
This more even distribution reflects the means by which the taxonomy was designed.
I created categories if there were a minimum number of vulnerabilities of a similar
nature. As a result, there are seven categories into which only four or five detection
events are classified.

For example, there were a handful of detection events classified as either file/file
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Version in which the vulnerability was first released
Type 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 All

AVE 3 1 4
BCE 4 1 5
BO 35 3 3 2 1 1 2 1 1 1 50
CE 1 1
CM 4 2 1 2 9
DE 5 4 1 2 1 1 1 15
DEI 4 4
ECH 2 1 1 4
EE 2 1 1 1 5
F 8 1 1 2 1 13
FD 5 5
FS 4 4
HC 2 2 1 2 1 1 2 11
IOU 7 1 1 1 1 1 12
IVE 5 2 2 1 1 11
NPD 1 1 1 3
R 12 1 13

Total 103 16 8 10 9 0 4 6 4 3 2 1 3 169

Table 6.2: The number of OpenBSD detection events of each type in the custom
classification system, by version. A single detection event may be counted under
multiple types, so the totals may differ from those in Table 5.1.
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Figure 6.2: Detection events’ types in the custom OpenBSD classification system vs.
their date known. (Detection events may be categorized under multiple types.)

system (F) faults or as file descriptor (FD) faults. The NVD would not necessarily
create these two categories because the number of vulnerabilities in the CVE list to
which this category would apply is small. However, they seem to be over-represented
in this study, and thus I thought it appropriate to create these two categories.

Figure 6.2 shows the OpenBSD vulnerability detection events according to both
category and the date known. (It is the same as Figure 6.1, except that it uses the
custom taxonomy rather than the NVD taxonomy.) Circles at the same position
on the vertical axis represent detection events with vulnerabilities of the same type.
The location of the categories on the vertical axis is alphabetical.

In this taxonomy, integer over/underflows (IOU) are separated from the remain-
der of boundary condition errors (BCE). As a result, this figure shows that IOUs
became more common towards the end of the study, while BCEs became less com-
mon. This distinction was concealed by the NVD taxonomy used in Figure 6.1.

6.4 Conclusion

The research on vulnerability taxonomies has yet to produce a single, widely ac-
cepted, useful system. The existing vulnerability databases, such as the NVD, have
thus relied upon makeshift systems that were probably created based upon an anal-
ysis of the data they contained at a given time. The resulting systems are hard to
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compare. Furthermore, a few categories such as buffer overflows or input validation
errors are over-represented.

I have not constructed a better universal taxonomy. Instead, I have applied the
widely used NVD taxonomy to the OpenBSD data set. I have also created and ap-
plied a related custom taxonomy based upon the similarity of different vulnerabilities
in the data set.

Work on a next generation vulnerability database, as proposed in Section 3.7,
should include work on an accompanying, developer-perspective taxonomy. That
taxonomy should strive to achieve the goals enumerated by Edward Amoroso, includ-
ing categories that are: mutually exclusive, exhaustive, unambiguous, repeatable,
accepted, and useful [Amo94, p. 34]. A good taxonomy is critical to ascertaining
whether or not the vulnerability detection is an independent process.
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Chapter 7

The Independence of

Vulnerability Detection

Vulnerability discovery models assume, among other things, that the data to which
they are applied represents independent events. Unfortunately, vulnerability detec-
tion is frequently a dependent process. In Chapter 6, I categorized the OpenBSD
data according to both the NVD and a custom taxonomy. In this chapter, I test the
categorized OpenBSD data to see whether the detection of each type of vulnerability
is a dependent process. If vulnerability discovery is dependent, existing SRMs may
provide inconsistent results when they are applied to vulnerability data—and new
VDMs that do not assume independence should then be developed.

7.1 Reasons for detection dependence

There are three primary causes for dependency in the detection of vulnerabilities:
the discovery of a new type of vulnerability, a previously unconsidered location, or a
new tool for finding vulnerabilities. Each of these causes can result in the discovery
of large numbers of similar vulnerabilities in a short time span.

7.1.1 A new type of vulnerability

The first cause for dependency is the discovery/popularization of a new type of
vulnerability. For example, three different file descriptor vulnerability detection
events occurred in OpenBSD during one month in 1998. The vulnerabilities were
in different areas of the operating system, were detected by different people, and
were reported at different times. During the entire eight years of the study, only
one other file descriptor vulnerability was detected. Although I have no documen-
tary evidence, I suspect that the discovery of the first file descriptor vulnerability
prompted detectors to look for similar vulnerabilities.

The first public post [Twi99] asserting the exploitability of format string faults
was made in September, 1999 [Wik07]. These faults were thus now considered a vul-
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nerability. Within a year, nine of these vulnerabilities were reported in OpenBSD.1

7.1.2 A new location in which to search for vulnerabilities

The second cause for dependency in the vulnerability discovery process is the discov-
ery/popularization of a new target: either a subsystem or an entirely new system.
For example, after five years of no vulnerabilities within CVS in OpenBSD, nine
vulnerabilities were discovered in the CVS program within a year.2 A detector re-
ported one CVS vulnerability in May of 2004 [Ess04a]. Two weeks later, he and
another detector reported another six vulnerability discovery events in CVS while
they were investigating the first vulnerability [Ess04b].

The latter six were vulnerability detection events. Following the process de-
scribed in Section 5.2, I combined several vulnerabilities into one of those detection
events: i.e. that detection event contains multiple same-type vulnerabilities discov-
ered by the same person in a short time period.

This example illustrates the difficulty in constructing a dataset of independent
vulnerability detection events. Where do you draw the line? This problem is insur-
mountable when the data collection is distantly retrospective: sometimes the only
way to achieve accuracy is to query the detectors.

7.1.3 A new tool with which to detect vulnerabilities

A third cause of dependence is when a tool is developed that enables detectors to
discover vulnerabilities. Such tools can lead to the detection of vulnerabilities of
different types, in different locations in a single program, or in different programs.
The execution of such a tool is likely to lead to a cluster of vulnerabilities and thus
may break the independence assumption made by VDMs.

For example, in 2002 researchers at the University of Oulu designed the Protos
SNMPv1 test suite [Uni02]. This program is an example of a ‘fuzzer’: it generates
sample inputs to programs in an attempt to find specific inputs that cause failures.
This tool found at least four vulnerabilities of at least two different types.3 More-
over, these vulnerabilities were present in a wide variety of different programs that
implement the SNMPv1 protocol.

7.2 The independence of OpenBSD vulnerabilities

One way to assess the independence of the vulnerability discovery process is a Wald-
Wolfowitz runs test [GS05]. This test considers a sequence of two values and indi-

1Including CVE identifiers: 2000-0751, 2000-0763, 2000-0993, 2000-0994, 2000-0995, 2000-0996,

2000-0998, 2000-0999, 2000-1010
2Including CVE identifiers: 2004-0180, 2004-0396, 2004-0405, 2004-0416, 2004-0417, 2004-0418,

2004-1471
3CVE identifiers: 2002-0012 and 2002-0013
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OpenBSD vulnerabilities
Foundational All

Type Full name of type # p-value # p-value

NC Not Classified 12 0.148 16 0.000
AVE Access Validation Error 9 0.838 10 0.629
BCE Boundary Condition Error 8 0.638 15 0.148
BO Buffer Overflow 31 0.031 48 0.053
CE Configuration Error 3 0.731 6 0.601
DE Design Error 11 0.438 28 0.007
ECH Error Condition Handling 8 0.064 14 0.084
EE Environmental Error 3 0.731 5 0.662
IVE Input Validation Error 10 0.972 16 0.235
R Race condition 10 0.099 11 0.785

Table 7.1: The number of detection events in the OpenBSD data set, according
to the NVD taxonomy and the version released (foundation version or all versions
combined). The p-values indicate the result of a Wald-Wolfowitz runs test. Those
values less than 0.05 are in bold, indicating 95% certainty that detection events of
this type were not independent.

cates the likelihood that the sequence was generated randomly. If there are too
many or too few ‘runs,’ in which the same value is repeated, then the sequence is
unlikely to have been generated randomly.

To apply this test, the vulnerabilities are classified according to their type. The
test is performed on each type of vulnerability: the two values are whether or not
the vulnerability was of the type being considered. For example, consider a sequence
of five vulnerabilities of the following types: BO, IOU, BO, EE, IOU. These vul-
nerabilities were discovered in the order in which they are listed. To test whether
buffer overflows were discovered independently, the runs test is performed on the
sequence: Yes, No, Yes, No, No. The ‘yes’ values indicate buffer overflows.

Table 7.1 shows the number of vulnerabilities of each category of the NVD clas-
sification system described in Section 6.2. Table 7.2 shows the number of vulnerabil-
ities of each category of the OpenBSD classification system described in Section 6.3.

The two Tables are constructed the same. Each row represents vulnerabilities
of a single category. The columns are divided into data for version 2.3 and all
versions combined. (The data contains an insufficient number of detection events
for statistical analysis of single versions other than the foundation version.) The
‘all’ column includes every detection event in every version. The main columns are
divided in two: one sub-column to indicate the number of vulnerabilities of that
type and the other to indicate the p-value produced by a Walf-Wolfowitz runs test.
The p-values less than 0.05 are in bold: the detection events in that category occur
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OpenBSD vulnerabilities
Foundational All

Type Full name of type # p-value # p-value

AVE Access Validation Error 3 0.731 4 0.002
BCE Boundary Condition Error 4 0.651 5 0.662
BO Buffer Overflow 35 0.407 50 0.490
CE Configuration Error 0 NA 1 NA
CM Coding Mistake 4 0.022 9 0.026
DE Design Error 5 0.105 15 0.000
DEI Design Error, Interation 4 0.000 4 0.000
ECH Error Condition Handling 2 NA 4 0.725
EE Environmental Error 2 NA 5 0.662
F File handling 8 0.638 13 0.042
FD File Descriptor 5 0.000 5 0.000
FS Format String 4 0.651 4 0.725
HC Heap Corruption 2 NA 11 0.331
IOU Integer Over/Underflow 7 0.428 12 0.287
IVE Input Validation Error 5 0.105 11 0.129
NPD Null Pointer Dereference 1 NA 3 0.788
R Race condition 12 0.004 13 0.333

Table 7.2: The number of detection events in the OpenBSD data set, according to
the custom taxonomy and the version released (foundation version or all versions
combined). The p-values indicate the result of a Wald-Wolfowitz runs test. Those
values less than 0.05 are in bold, indicating 95% certainty that detection events of
this type were not independent.

in a dependent fashion, with a 95% confidence level. Large values do not necessarily
indicate independence: the test can indicate one type of dependence, but no test
can prove independence.4

Table 7.1 shows the results of the Walf-Wolfowitz runs test for vulnerability
detection events categorized according to the NVD system. When applied to all
detection events in the study, regardless of the version in which the vulnerabilities
were introduced, it indicates that detection events of type NC and DE occur de-
pendently. NC stands for ‘not classified.’ Many of the earlier vulnerabilities are not
classified, because they predated the NVD. As a result, their dependence may be
caused by the fact that most of them occurred early in the study. The table also
shows that detection events vulnerabilities of type BO introduced in the foundation
version occur dependently.

4The Walf-Wolfowitz tests in this chapter were performed using the R statistics program [R] and

the function ‘runs.test’ within the package ‘tseries.’
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These results are less extreme than those found by Gopalakrishna & Spafford in
their analysis of NVD data on vulnerabilities in IIS, BIND, Lpd, Sendmail, and RPC.
They find that in one-third of the instances in which “two successive vulnerabilities
are considered in a software product, they are of the same type.” Their total results
for all of the categories of all of these products were: 24 dependent, 8 independent,
and 8 unknown [GS05].

Table 7.2 shows the results of the Walf-Wolfowitz runs test for vulnerability
detection events categorized according to the seventeen types in the custom clas-
sification system. When applied to all detection events in the study, regardless of
the version in which the vulnerabilities were introduced, it indicates that detection
events of type AVE, CM, DE, DEI, F, and FD occur dependently. When applied
to detection events with vulnerabilities introduced in the foundation version, it in-
dicates that types CM, DEI, FD, and R occur dependently.

7.3 Caveats

There are three potential concerns with the dependence results presented here.
First, we must be careful when considering the results for foundational vulner-

abilities. Detectors do not look for vulnerabilities based upon the version in which
the vulnerability was first released. Logically, then, some vulnerabilities whose dis-
covery was dependent may have been introduced in different versions of OpenBSD:
this dependence will not be visible when individual versions are considered. The
results for all of the vulnerabilities, regardless of the version in which they were first
introduced, are the best representation of the dependence of the process.

Second, these results depend upon the taxonomies used. Both taxonomies have
shortcomings. The NVD taxonomy has too little granularity and thus is overly
reliant on a few categories. The custom taxonomy was designed specifically for this
data set, and it may therefore be excessively fine-grained.

Finally, dependency may be exhibited in multiple ways. It would be useful to
test for other types of dependence, but first we need more information about what
other forms dependence could take. The Wald-Wolfowitz test considers whether the
data contains too many (or too lengthy) ‘runs’ of consecutive detection events of the
same type. This test can indicate the dependence exhibited when the discovery of a
vulnerability prompts the immediate discovery of a vulnerability of the same type.

However, the dependency of vulnerability discovery could be indicated in other
ways than the sequential discovery of identical types. For example, it is possible that
dependency in detection is not related to a vulnerability’s type but rather by its lo-
cation. Unfortunately, the collection process for the OpenBSD data set has resulted
in clusters of vulnerabilities from the same location. These clusters occur when
a third-party vendor like the X.Org group releases a patch that bundles together
fixes for several vulnerabilities, as discussed in Section 5.2.3. As a result, testing for
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locational dependency would be strongly biased by the collection methodology.
To effectively test each of the different aspects in which dependency might be

exhibited, we need a better understanding of those aspects. A good next step for
learning about dependence is to go to the source: a fruitful topic for future work
may be to survey external detectors about their motivations and processes.

7.4 Effects of dependence

This analysis of detection events indicates that discovery is a dependent process,
at least for some categorizes of vulnerability—even though the clearly dependent
vulnerabilities were already consolidated into detection events, so the data analyzed
above already had any obvious dependencies removed.

One way to illustrate the effects of dependence is to compare the foundational
detection events with foundational vulnerabilities. This comparison will not reveal
the dependence discovered above, but it will highlight how important dependence is
for VDMs.

7.4.1 Comparing vulnerabilities with detection events

Each vulnerability is associated with a time-to-next-vulnerability (TTNV): the num-
ber of days that elapsed between the discovery of the prior vulnerability and the
discovery of this one. Figure 7.1 depicts foundational vulnerabilities (not detection
events) according to their date known. The vertical axis indicates the TTNV for
each vulnerability. The blue circles are vulnerabilities that appear to be independent:
they are not included in any detection events. The red ‘x’ marks indicate vulnera-
bilities that are clearly dependent: these vulnerabilities have been consolidated into
detection events in the foundational data set. Most of the dependent vulnerabilities
have small TTNVs. Indeed, one reason they are identified as dependent is that they
are detected soon after another vulnerability of the same type.

Figure 7.2 provides another illustration of the effect of dependence. Again, the
horizontal axis indicates the date known for each vulnerability, but this vertical
axis indicates the cumulative number of foundational vulnerabilities or detection
events. The top curve represents individual vulnerabilities. Once again, independent
vulnerabilities are shown as blue circles and dependent vulnerabilities are shown
as red ‘x’ marks. The bottom curve shows detection events, with each detection
indicated by a green ‘+’ mark.

The bottom curve thus incorporates all of the vulnerabilities in the top curve:
it simply consolidates the dependent vulnerabilities into single detection events. A
visual examination suggests that the variability in the top curve is higher than in
the bottom curve. The bottom curve also appears to exhibit some kind of ‘software
security’ growth. In other words, the rate of detection appears to be declining over
time.

Andy Ozment Vulnerability Discovery & Software Security



Ch. 7: The Independence of Vulnerability Detection 65 of 139

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

Date known

T
T

N
V

 (
da

ys
)

0

43

87

130

174

217

1999 2000 2001 2002 2003 2004 2005 2006

o Independent vulnerabilities

x Dependent vulnerabilities

Figure 7.1: The TTNV of foundational vulnerabilities, with detection events broken
down into their constituent dependent vulnerabilities.
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Figure 7.2: The cumulative number of foundational vulnerabilities and detection
events over time. The two curves are different representations of the same data.
The top curve depicts vulnerabilities, while the bottom curve groups dependent vul-
nerabilities into detection events.
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Successfully fitted models
Littlewood/Verrall (Q) Littlewood/Verrall (L)

Statistic Value (Rank) Value (Rank)

Bias (u-plot) 0.18 (1) 0.18 (1)
Trend (y-plot) 0.12 (1) 0.12 (2)
Relative accuracy (PLR) 228.67 (1) 228.86 (2)

Overall Rank (1) (2)

Table 7.3: Applicability results for the two successfully fitted VDMs applied to foun-
dational detection events.

7.4.2 Applying VDMs

Dependence in the vulnerability discovery process violates an assumption common
to most VDMs. As a result, these models cannot be trusted to consistently produce
accurate results. The application of these models to first the foundational vulnera-
bility data and then to the foundational detection event data is illustrative of this
problem.

I took seven commonly used SRMs and applied them, unchanged, as VDMs
to the foundational data. None of the seven could be successfully fitted to the
foundational vulnerabilities. However, two of the seven were successfully fitted to
the foundational vulnerability detection event data: Littlewood & Verrall (linear),
and Littlewood & Verrall (quadradic). The consolidation of thirty-two dependent
vulnerabilities into fourteen detection events was significant enough to enable two
models to fit the data.5

Table 7.3 provides applicability results for these two successfully fitted models
(the applicability tests were discussed in Section 3.3). They estimate an end-of-study
mean TTNV of 44.8 and 52.0, respectively. They also estimate that an additional
67.6 and 51.8 detection events will occur in the next ten years, respectively.

The successful fit and one-step-ahead prediction of these two models may indicate
that the remaining dependency in the data is not a problem. However, in an earlier
work, these two successful models had not fit an incomplete version of this dataset,
which covered less time and contained seven fewer detection events. For that subset,
a different model was successful: Musa’s logarithmic [OS06b]. The fact that no
model has been consistently accurate and successfully fitted to the detection events
could be caused by residual dependency in the data; alternatively it is conceivable
that other assumptions, such as time and effort, are not adequately met.

5The models were applied using the SMERFSˆ3 reliability modeling tool [Sto03]. The seven

models tested were: Moranda’s geometric, Jelinski-Moranda’s de-eutrophication, Musa’s logarith-

mic, Musa’s basic, Non-homogeneous Poisson, Littlewood & Verrall (linear), and Littlewood &

Verrall (quadradic). See [MIO87; AIA93; Far96] for descriptions of these models.
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7.5 Conclusion

The OpenBSD vulnerability data set was carefully constructed in an attempt to
identify and eliminate dependence: when vulnerability discovery was clearly depen-
dent, those discoveries were combined into a single detection event in the data set.
Nonetheless, the application of the runs test indicates that some of the detection
events in the data set still occur dependently. Even the categories whose detection
events were not found to be dependent may still be so: other tests may find different
types of dependence. This result violates the basic assumption of data independence
that underlines VDMs.

The application of VDMs to the foundational vulnerability data—as I have done
in previous work [Ozm05; Ozm06; OS06b]—is thus theoretically unsound. We can-
not rely upon the predictions of models applied to this data, as long as those models
require independent events. This result also calls into question the other literature
on VDMs: none of the existing work that utilizes VDMs has tested its data for
independence.

At the same time, this work highlights the need for a better database and a
better taxonomy, as discussed in Section 4.3. Both of the taxonomies used here
have shortcomings that may affect these results.
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Chapter 8

Source Code Evolution &

Vulnerability Density

Existing VDMs presume that vulnerability discovery is an independent process. The
evidence presented in Chapter 7 contradicts this assumption and suggests that we
need new models that do not assume independence. However, even without such
models, a careful examination of existing vulnerability data and other characteristics
of the software system can provide useful information for efforts to secure that
system.

In this chapter, I analyze the evolution of OpenBSD’s source code during the
study, and I consider the results of that analysis in combination with vulnerability
data. In Chapter 9, I take this information and consider whether or not the rate of
vulnerability detection in OpenBSD is decreasing over time.

A startlingly high 63% of the 155 detection events in the OpenBSD data set were
foundational vulnerabilities. Why have so few vulnerabilities been reported that
were introduced in later versions? Alternatively, why were so many of the reported
vulnerabilities introduced in the foundational version? One possible explanation is
that, even after eight years and seventeen new versions, the foundational code still
dominates the source code.

In order to better understand how the source code has evolved over time, I
analyzed the collective changes to the OpenBSD code repository. I thus establish
how much code was altered/introduced in each version.

8.1 Methodology

I first pre-processed each version of the source code. Only files with the suffix .c or
.h were retained, and all comments were stripped. Furthermore, files whose name
included keywords indicating that they belonged to an architecture other than x86
were removed.

After pre-processing was completed, each version was compared with each suc-

69



Ch. 8: Source Code Evolution & Vulnerability Density 70 of 139

cessive version. I used diff to compare files with the same path and filename. The
diff tool was instructed to ignore changes in whitespace or the location of line
breaks.

The OpenBSD development team sometimes moved or copied files, which is
difficult to track via CVS. To detect copies and moves, files with the same name but
different paths were also compared. If they were found to be identical, I copied the
file in the earlier version to the directory in which it was found in the later version.
(These copies were used only to determine if code in future versions derived from
earlier versions: they were not used to calculate the total line count.)

The estimate of code commonality is highly conservative. The diff tool marked
code lines as changed even for trivial alterations like global variable renaming and
some types of reformatting—and the OpenBSD team has been reformatting the code
base. In addition, this process will indicate that all of the code in a file is new if that
file was moved/copied and then had just one line altered between versions. (Recall
that the automated comparison process only understands that a file was moved if the
file in the new location is an exact copy of the file in the old location.) Furthermore,
if the name of a file is changed then all of the code in that file is considered to be
new. The comparison data will thus understate the degree to which later releases
are composed of substantively unchanged code from earlier releases.

This analysis was performed for a previous work [OS06b], so it only encompasses
fifteen versions of OpenBSD: 2.3 – 3.7. The vulnerability data set described in Chap-
ter 5 includes vulnerability information on all of those versions plus an additional
three versions.

8.2 Source code composition

Table 8.1 illustrates the proportion of each version of OpenBSD that is derived from
earlier versions. Each column represents a composite version; each row represents
a source version that contributes code to the composite. Values represent the per-
centage of the lines of code in the composite version that originate in the source
version.1 A line of code in a composite version of OpenBSD is said to originate in a
source version if the line was last modified in that source version.

For example, the fifth column breaks down the composition of OpenBSD version
2.7. The top row of the column indicates that 6% of the lines of code originate in
that version: they were either altered since the prior version or have been newly
introduced. The second row from the top shows that 9% of the source code was
altered/introduced in the prior version, 2.6, and was not changed after that version.
The bottom row indicates that the bulk of the code in version 2.7 (79%) was both
present in and remains unchanged since the foundation version.

1Because the percentages were rounded, the total percentage for each version may not exactly

equal one hundred.
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Table 8.1: The percentage of each version of OpenBSD that is composed from earlier
versions. Columns represent composite versions of OpenBSD, whereas rows repre-
sent the source versions of OpenBSD from which they are composed. Each value in
the table is the percentage of lines in the composite version that were last modified
in the source version.
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Figure 8.1: The composition of the full source code. The composition of each version
is broken-down into the lines of code originating from that version and from each
prior version. (This is a graphical representation of Table 8.1.)
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Figure 8.2: The composition of the source code directory within the kernel (sys/kern)
that had the most vulnerabilities. The composition of each version is broken-down
into the lines of code originating from that version and from each prior version.

Figure 8.1 is a graphical representation of Table 8.1: it shows the composition of
each version, using the number of lines of code rather than percentages. Version 2.3
is composed of a single bar: by definition, all code in this foundation version is said
to originate in it. For each successive version, a new bar is added to represent the
number of lines of code that were altered/introduced in that release. The entries in
Table 8.1 correspond to the colored bars that appear above the gray version 2.3 bar
in each successive version shown in Figure 8.1.

Several large alterations/introductions of code stand out in Figure 8.1: in ver-
sions 2.6, 2.9, and 3.5. The magnitude of the changes in versions 2.6 and 3.5 is
primarily due to a large number of files being renamed and slightly altered. This
comparison methodology thus overstates the number of new lines of code and under-
states the contribution of code derived from earlier versions. The changes in version
2.9 are caused in part by the renaming of files; however, they were also the result of
a major upgrade of the XFree86 package.

Another surprise is that the number of lines of foundational code fluctuates both
downwards and upwards. However, increases in the number of lines of foundational
code are readily explained: source files unaltered since the foundation version were
copied and used in other areas of the code.

Of all the second-level source code directories, the sys/kern directory contains
the largest number of detection events. Seventeen of the nineteen detection events
in this portion of the kernel were introduced in the foundation version. Figure 8.2
shows the evolving composition of the source code in the sys/kern directory. Many
of the vulnerabilities in this subsystem have been in code related to the processing of
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signals. Although this subsystem is part of the kernel, it does not include networking,
file system, or virtual memory code. The code in one of the networking portions of
the kernel (sys/netinet) has contributed thirteen detection events during the course
of the study, seven of which are foundational.

The most startling result presented here is that the foundational code comprises
a majority of the OpenBSD operating system, even after fourteen newer versions
have been released—and this estimate is highly conservative.

8.3 Vulnerability density

Reliability engineers have investigated the possibility of a relationship between ‘soft-
ware size metrics’ (e.g. the number of lines of code) and the number of faults in a
system. The fault density is the number of faults per some measure of software
size. For example, the number of faults per one thousand lines of non-comment
source code (KLOC). Some have argued that any well-written code can be expected
to have a fault density that falls within a certain range, e.g. 3–6 faults per thousand
lines of code (KLOC) [Hat97].

The related term for vulnerabilities is vulnerability density: The vulnerability
density is “the number of vulnerabilities per unit size of code” [AM05b]. Note
that calculated fault or vulnerability densities are estimates: we do not know the
real number of faults or vulnerabilities in a system. In this section, I consider
the density of vulnerability detection events instead of vulnerabilities. As in prior
chapters, a vulnerability detection event is assigned the release date of the earliest
injected vulnerability that it includes.2

8.3.1 Linear relationship

Is there a linear relationship between the number of lines of code altered/introduced
in a version of OpenBSD and number of vulnerabilities introduced in that version?

As I do not know the actual number of vulnerabilities present, I consider the
number of detection events that occurred within five years of release for each version
that is at least five years old. The number of detection events reported during this
period is shown in the third column of Table 8.2. The fourth column contains the
vulnerability detection event density for events in the five year period after each
version’s release. In this instance, densities are reported in units of detection events
per millions of lines of code (MLOC).

Figure 8.3 illustrates the relationship between the number of vulnerability de-
tection events and the number of lines of altered/introduced code. The standard
correlation test (Pearson’s ρ) is not applicable because I do not have enough data
points. A non-parametric correlation test, Spearman’s ρ, is unable to reject the null

2An earlier version of the work performed in this section was done collaboratively, with Stuart

E. Schechter, and published as [OS06b].
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Figure 8.3: The number of vulnerability detection events introduced and reported
within five years of release compared to the number of lines of code altered/introduced,
by version.

hypothesis that there is no correlation: it calculates a correlation coefficient of 0.46
and a p-value of 0.30.3

I am thus unable to find a significant correlation between the number of lines of
altered/introduced code and the number of vulnerability detection events.

8.3.2 Trends over time

The vulnerability detection event density of code added in new OpenBSD releases
could provide an indication of the success of their efforts to produce secure code. On
the other hand, code added by the OpenBSD team often provides security function-
ality: e.g. OpenSSH. As a result, that code is likely to attract a disproportionate
share of attention from individuals searching for vulnerabilities; this extra attention
may account for any differences between the versions’ detection event densities.

For each release, Table 8.2 shows the number of vulnerability detection events,
the number of lines of code altered/introduced (in millions), and the detection event
density. The third column shows the number of vulnerability detection events within
five years of each version’s release, and the fourth column shows the corresponding
detection event density. The fifth column shows the number of vulnerability detec-
tion events during the entire study, and the sixth column shows the corresponding
detection event density.

The detection event density of the foundation version is in the middle of the pack.
Versions 2.4 and 2.5 stand out for having the highest detection event densities (35.7
and 21.4 reported per million lines of code at the end of the study, respectively).

3A correlation coefficient of 1 indicates a positive linear correlation, −1 a negative correlation,

and 0 indicates no correlation. This test was performed using the function ‘cor.test’ in R [R].
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Within 5 yrs By end
of release of study

Vers. MLOC Events Events
MLOC Events Events

MLOC

2.3 10.14 73 7.2 97 9.6
2.4 .42 13 31.0 15 35.7
2.5 .28 5 17.0 6 21.4
2.6 1.05 8 7.6 9 8.6
2.7 .77 7 9.1 8 10.4
2.8 .40 0 0.0 0 0.0
2.9 2.23 4 1.8 4 1.8
3.0 .63 5 7.9
3.1 .81 2 2.5
3.2 .33 3 9.1
3.3 .32 2 6.3
3.4 .83 1 0.0
3.5 1.44 3 2.1
3.6 .74 0 0.0
3.7 .91 0 0.0

Total 21.30 110 5.2 155 7.3

Table 8.2: Vulnerability and code modification statistics for each version of
OpenBSD. MLOC is the number of lines of code (in millions) altered/introduced
in each version. Events are vulnerability detection events.

The large ratio of vulnerability detection events per line of code in version 2.4
seems to support the intuition that code providing security functionality is more
likely to contain vulnerabilities. Version 2.4 saw the introduction of the Internet Key
Exchange (IKE) key management daemon (isakmpd, two vulnerabilities introduced)
and OpenSSL (six vulnerabilities introduced). As a result, the new code added in
that release may have drawn particular attention from vulnerability hunters.

The density of vulnerability detection events for code originating in versions 2.6,
2.9, and 3.5 are lower in part because of the inflated new-code counts for those
versions (see Section 8.2).

8.4 Conclusion

When calculated per thousand lines of code, rather than per million, the density
of all detection events ranged from 0–0.0357 and averaged 0.0073. As noted above,
some software engineers estimate the fault density of well-written code to be 3–6 per
thousand lines of code [Hat97]; these detection event densities are three orders of
magnitude less than that amount. The two figures are not necessarily contradictory:
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‘faults’ include both quality faults and vulnerabilities, and a handful of detection
events included multiple vulnerabilities.

The majority (97 of 155, or 63%) of the vulnerabilities found during the study are
foundational; that is, they were born prior to the release of the foundation version.
I considered two hypotheses to explain why reported vulnerabilities were so often
foundational: foundational code might be of lower quality than more recent code,
or foundational code may constitute the bulk of the total code base.

The source code history data supports the latter hypothesis. Even after 7.5 years
and 14 newer versions, the foundation version dominates the overall source code: at
least 61% of the lines of code in version 3.7 are foundational, unchanged since the
release of version 2.3. The foundational version thus contributes 61% of the source
code and 63% of the detection events in the study. As a result, the security of the
foundation version may still be driving the overall security of OpenBSD.
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Chapter 9

Are Vulnerability Reporting

Rates Declining?

Dependence in vulnerability detection—and in the existing data on detection—
prevents the use of most current VDMs. However, even without explicit models,
can we learn anything important from the OpenBSD data set? One of the questions
we can consider is whether or not the rate of vulnerability detection in OpenBSD is
declining over time.1

Many in the security research community have criticized both the insecurity of
software products and developers’ perceived inattention to security. However, we
have lacked quantitative evidence that such attention can improve a product’s secu-
rity over time. Seeking such evidence, I investigate whether efforts by the OpenBSD
development team to secure their product have decreased the rate at which vulner-
ability detection events occur.

9.1 Social utility of vulnerability detection

In an original and intriguing work, Rescorla challenged a common assumption held
by the security community: he argues that the post-release detection of vulnerabil-
ities results in an overall loss to society [Res04]. To reach this conclusion, Rescorla
models both the costs suffered by users after a disclosure (either responsible or
instantaneous) and the benefits it provides.

9.1.1 Cost-benefit analysis

He first notes that users patch their systems slowly (even when it is known that a
vulnerability is being exploited), and some may not patch at all [Res03]. At the
same time, a vulnerability report or a patch will inform attackers of a vulnerability
and help them to create an exploit for that vulnerability. By forcing vendors to

1An earlier version of the work performed in this chapter was done collaboratively, with Stuart

E. Schechter, and published as [OS06b].
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release patches, external detectors ensure that attackers will also be aware of the
vulnerability. Since many systems remain unpatched for some time after the patch is
released, their users will likely suffer the effects of attacks (although the unpatched
systems may be those least valued). All disclosure thus leads to a significant social
cost.

Rescorla also questions the argument that benign detectors should seek to find
vulnerabilities because those vulnerabilities may already have been found and uti-
lized by attackers. He believes that an attacker cannot exploit a vulnerability many
times before the vendor learns about the vulnerability: the attacker will eventually
attack a system that is being carefully watched, thus alerting the system adminis-
trators to the vulnerability.

In addition, Rescorla was unable to fit VDMs to NVD data on three of the
four operating systems he considered. He also applied a Laplace test to his data,
which reveals that there is no trend towards a decreasing rate of reporting for the
same three out of four operating systems (Section 9.4 describes this test). He thus
concluded that there is no decrease in the rate of vulnerability reporting: the pool
of vulnerabilities in a product is essentially infinite with respect to the lifespan
of the product. Therefore, an attacker is unlikely to independently rediscover a
vulnerability that has been previously discovered by a benign detector—the pool of
vulnerabilities is too large. This result indicates that benign detectors provide no
real benefit: they are not racing to find and fix vulnerabilities before those same
vulnerabilities are found by malicious detectors. Instead, detectors are all finding
different vulnerabilities.

Using these assumptions, Rescorla modeled the social utility of vulnerability
hunting by benign external detectors and concludes that it is not socially beneficial.

9.1.2 Analysis

However, there are three important sources of potential error in Rescorla’s work:
independence, rediscovery, and noisy data.

First, Rescorla assumes that vulnerability detection is independent. Chapter 7
presents evidence that vulnerability detection in OpenBSD is not independent. If
Rescorla’s data is not independent, then the tests that Rescorla used are inapplicable
and no conclusion can be drawn from his data.

Second, he assumes that independent rediscovery, when independently working
detectors discover the same vulnerability, is unlikely. In reality, Rescorla notes that
independent rediscovery happens on occasion, and he thus concludes that some
detection is not stochastic. However, he finds this situation rare enough to exclude
it from the cost-benefit analysis. Chapter 10, provides evidence that independent
rediscovery occurs too frequently to be dismissed and discusses this phenomenon in
more depth.

Third, Rescorla notes that his NVD data set is noisy and problematic, and
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he recommends the collection of better data. This chapter answers his challenge
by utilizing the OpenBSD dataset and investigating whether the rate of detection
events in OpenBSD is declining. I consider the median lifetime of vulnerabilities in
different versions of OpenBSD, look at overall detection event trends, and finally
employ a Laplace test on data for foundational vulnerabilities.

9.2 What is the median lifetime of a vulnerability?

●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●●● ●● ●●
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Figure 9.1: The lifetime of foundational detection
events during the study.

Version Median
Lifetime

2.3 877
2.4 1337
2.5 502
2.6 551
2.7 216

Table 9.1: Median lifetime
in days of vulnerabilities de-
tected within the first six
years of a version’s release.

Rescorla [Res04] applies an exponential model to his data, so he is able to ascer-
tain the half-life of the vulnerability sets he considers: those half-lives range from
10 months to 3.5 years. Without an exponential model of my data, I am not able
to ascertain, in a formal sense, the half-life of vulnerabilities in OpenBSD. Instead,
I calculate the median lifetime of vulnerabilities in vulnerability detection events:
the time elapsed between the release of a version and the detection of half of the
vulnerabilities detected in that version.

Figure 9.1 plots the age, at detection event, of foundational vulnerabilities. The
data is necessarily right censored: I do not know that I have found all of the vul-
nerabilities in the foundation version. This data provides a lower-bound of 2.8 years
(1034 days) on the median lifetime of foundational vulnerabilities. More founda-
tional vulnerabilities will undoubtedly be found, so this value may increase but will
never decrease.

Is the median lifetime of vulnerabilities decreasing in newer versions? Table 9.1
depicts this time for those vulnerabilities detected within six years of the release of
versions 2.3 through 2.8; this data relies upon the gross simplifying assumption that
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Figure 9.2: Foundational detection events divided into periods according to their date
known

all vulnerabilities present were found within six years of each version’s release. (I
make this assumption in order to include the same time span after release for each
version.) The results do not indicate a trend.

The most striking part of this analysis is that the median lifetime of vulnera-
bilities is so long. Vulnerabilities have remained in the source code, unnoticed, for
years—despite code reviews.

9.3 Illustrating detection event trends

We can only reliably analyze the rate of detection events if we have sufficient data
points. In this section, I consider the foundation version, for which I do have ade-
quate data.

9.3.1 Vulnerability detection events per interval

A simple means of examining the detection event rate is to categorize detection
events by the time period in which they were occurred. To do so, I divide the study
into periods of equal length.

The columns in Figure 9.2(a) represent the number of vulnerabilities detected
in each of eight, equal-length periods of approximately a year (366 days). Visual
inspection does not indicate a convincing decrease in the rate of detection events.
Somewhat more convincing results can be obtained by dividing the study period into
halves, as shown in Figure 9.2(b). The number of detection events does declines from
the first period (58 vulnerabilities) to the second (39 vulnerabilities).

Neither figure provides significant evidence that the rate of reporting has de-
clined. However, the latter figure does suggest it. More convincing results would
rely upon confidence intervals. Unfortunately, the evidence for dependence presented
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Figure 9.3: The number of days between foundational vulnerability detection events
in the first half of the study compared with events from the second half.

in Chapter 7 prevents the ready assumption of an underlying statistical model from
which to obtain such confidence intervals.

9.3.2 Time to next vulnerability

Another way to examine the frequency of vulnerability reports is to measure the
time that passes until the discovery of the next vulnerability: the time to next
vulnerability (TTNV). As the foundation version aged, did the TTNV change?

Figure 9.3 groups foundational vulnerability reports by their TTNV. Each group
appears as a pair of columns. The light grey columns, the first column in each pair,
represent detection events that occurred during the first half of the study. The
dark grey columns, the second column in each pair, represent detection events that
occurred in the last half of the study. The TTNV ranges were chosen by dividing
by five the maximum TTNV of 217 and rounding the results.

Figure 9.3 shows that the second half of the study had fewer foundational vul-
nerabilities with TTNV of 43 or less than the first half of the study (38 in the first
half vs. 27 in the second half). The number of vulnerabilities with TTNV greater
than 43 also decreased between the two halves (21 in the first half vs. 12 in the
second half).

Figure 9.4 presents another perspective on the TTNV. The vertical axis indicates
the TTNV of each vulnerability: the number of days after this detection event before
the next detection event occurred. The horizontal axis indicates the date known
for each detection event. This figure shows that the number of detection events
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with short TTNVs particularly decreased in the last quarter of the study. This
figure differs from Figure 7.1 by showing the TTNV of detection events rather than
individual vulnerabilities.

9.3.3 Summary

For the foundation version, the analysis does not conclusively indicate a declining
trend in the rate of vulnerability reporting, but it suggests such a trend. This finding
contradicts that of Rescorla [Res04], whose analysis failed to reject the hypothesis
that the rate of vulnerability reporting has remained constant in three of the four
operating systems he evaluated.

9.4 Laplace test for trend

The analysis above indicates a decrease in the rate of reporting of foundational
vulnerabilities. In this section, I apply a Laplace test to make the data more directly
comparable to the work of Rescorla.

The Laplace test is used to ascertain whether or not there exists a trend in the
rate of the events being studied (vulnerability detection events, in this case). This
test is commonly used in the reliability engineering field [KL96]: it is always ap-
propriate if the underlying process is a non-homogenous Poisson process (NHPP).
However, if the process is not NHPP, then its appropriateness cannot be assumed
[Gau92]. In Chapter 7, I presented evidence for dependence in vulnerability discov-
ery. That evidence implies that a Poisson process is not appropriate for this data.
Nonetheless, I include the results of the Laplace test here for correspondence with
Rescorla’s work.

Table 9.2 summarizes the interpretation of the Laplace factor. The H0 is that
the occurrence of the events (i.e. vulnerability detection events) is a homogenous
Poisson process (HPP): there is no change in the rate at which the events occur. It
is tested against the following alternative hypotheses:

• H1dec the event intensity is decreasing

• H1inc the event intensity is increasing

• H1trend there is a trend in the event intensity

For our purposes, the intensity is the number of vulnerabilities expected to be re-
ported on a given day.

Here, I analyze the TTNV data for the foundation version. Figure 9.5 shows the
calculated Laplace factors, u(T ), for each vulnerability report. The lowest horizontal
dotted line is at −1.96. When the calculated Laplace factors are less than that
amount, the data indicate with a two-tailed confidence level of 95% that the rate
of vulnerability reporting is not constant. The test finds significant evidence for
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Laplace factor Hypotheses Conclusion

u(T ) < –1.645 Reject H0 vs. H1dec Indicates a decreasing rate
u(T ) > 1.645 Reject H0 vs. H1inc Indicates an increasing rate
|u(T )| < 1.96 Accept H0 vs. H1trend Indicates stable rate (no trend)

Table 9.2: The Laplace factor is used to ascertain the existence and direction of a
trend in the rate of reporting.
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Figure 9.5: Laplace test for the existence and direction of a trend in the rate of
vulnerability reporting.

a decrease in the rate of vulnerability reporting by the end of year six (when the
Laplace factor is below –1.96).

This test thus provides some evidence that the rate at which foundational vulner-
abilities are reported is declining, although, this decrease did not begin until almost
seven years after the foundation version was released. However, until the Laplace
test is shown to have significance for dependent processes, it cannot confidently be
used with this data.

9.5 Other versions

The foundation version is the only version with enough vulnerabilities for a statistical
analysis. However, we can examine the other versions using the simple methodology
employed in Section 9.3: examining the number of vulnerabilities from each version
that were detected in different periods of the study.

Figure 9.6 shows the number of vulnerabilities discovered in each half of the study
for OpenBSD versions 2.4–3.1. The first bar represents the number of vulnerabilities
discovered in the first half of the study; the second bar represents the number of
vulnerabilities discovered in the second half of the study. The figures use all of the
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1 2

731 days per period

# 
vu

ln
er

ab
ili

tie
s 

id
en

tif
ie

d

0
4

8
12

(h) Vulnerabilities introduced in 3.1

Figure 9.6: The number of vulnerabilities detected in the first and second halves of
the study. The study is of different length for each version, so the number of days
in each half is noted on the figures.
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available study data, so the length of the study differed by each version (i.e. version
2.4 was released six months prior to version 2.5, so we have more days of information
on version 2.4). The length of the study halves, in days, is noted on each figure.

For every version, the number of detection events either remained stable or de-
creased from the first half of the study to the second. Note that no version 2.8
vulnerabilities were detected during the study: none of the detected vulnerabilities
was first released in version 2.8.

9.6 Limitations of vulnerability analyses

My analysis examines the rate at which vulnerabilities became known in OpenBSD.
However, this information is only one aspect of the security of OpenBSD. The
OpenBSD development team has not only worked to increase the security of the
system’s code base; it has also worked to improve its overall security architecture.
These improvements include new security functionality and safeguards that reduce
the severity of vulnerabilities.

9.6.1 New security functionality

The addition of valuable new security functionality, like the OpenSSH encrypted
network program, increases the amount of code that is deemed security-critical and
may thus increase the pool of reportable vulnerabilities. This increase does not
necessarily imply that the code is less secure: it may only mean that the operating
system has assumed new security responsibilities.

9.6.2 Reductions in vulnerability severity

Architectural improvements that reduce the severity of a vulnerability—but do not
eliminate it entirely—can improve security without reducing the rate at which vul-
nerabilities are discovered and reported. For example, the OpenBSD team improved
the security architecture of OpenBSD by adding stack-guarding tools and random-
ized memory allocation [dR05], both of which reduce the severity of vulnerabilities
within the code base.

These security improvements are not accounted for in this study, because I lack
an accurate and unbiased methodology with which to assess the severity of vulner-
abilities. Simply measuring reductions in the total pool of vulnerabilities is thus
likely to underestimate improvements to the security of the overall system.

9.6.3 The lack of effort-normalization

As discussed in Section 3.5.1, we currently have no way to accurately normalize
the chronological data according to the effort expended by detectors. The rate of
vulnerability discovery is thus dependent upon the effort invested by detectors. The
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whims and interests of those detectors also determine which areas of the operating
system are most closely examined for vulnerabilities. These data are thus unlikely
to be a perfect indicator of the underlying number of vulnerabilities in the source
code; however, they are the best information available and provide useful insight
into the rate of vulnerability detection in the current detection environment.

9.7 Conclusion

Because the OpenBSD vulnerability detection events are dependent, most common
VDMs are inapplicable. Some simple analysis indicates that the rate at which detec-
tion events occur in OpenBSD is declining. However, this evidence is not statistically
significant.
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Chapter 10

Independent Rediscovery and

Vulnerability Disclosure Policies

The previous chapter demonstrated that vulnerability data can provide useful infor-
mation for developers, even if appropriate VDMs are not available. In this chapter,
I look more broadly at how vulnerability data is gathered. In particular, I review
vulnerability disclosure policies and consider an assumption debated in the literature
on such policies: vulnerability rediscovery. The likelihood that a single vulnerability
will be detected by multiple individuals, working independently, is a critical factor
in ascertaining the most appropriate vulnerability disclosure policy.

The means by which an independent, benign detector informs the vendor and the
public of a vulnerability is a topic of dispute. In the past, a benign detector might
have notified the vendor of the vulnerability and then waited an indeterminate length
of time until the vendor released a patch that fixed it. In the 1990s, discontent with
the length of time some vendors were taking to release patches led to the creation of
public ‘full-disclosure’ fora (e.g. the Full Disclosure [Seca] and Bugtraq [Secb] mailing
lists). In these fora, benign detectors publish vulnerability reports that detail the
existence of the vulnerability and sometimes go so far as to give instructions on its
exploitation.

The creation of the full-disclosure fora provoked a policy debate: was public
welfare served better by releasing a vulnerability report before the vendor’s patch
(instantaneous disclosure) or from delaying the report until the patch was ready (re-
sponsible disclosure)?1 Advocates of instantaneous disclosure argue that it enables
users to mitigate the impact of the vulnerability and pressures software vendors to
provide patches more rapidly. Advocates of responsible disclosure argue that notify-
ing attackers of the existence of the vulnerability without simultaneously providing
a patch results in increased social cost due to attacks. Implicit in both arguments

1 A term like ‘responsible disclosure’ is not value free and is hotly debated. I use it out of

convenience and in accordance with its usage in the popular media. When possible, I employ the

terminology of [AKN+04] to facilitate the creation of a standard nomenclature.
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is the assumption that vulnerabilities should be found and fixed because they are
likely to be rediscovered by malicious actors: if a vulnerability has been found by a
benign detector, it should be fixed before an attacker independently rediscovers and
exploits it.

10.1 Related work

Advocates of responsible disclosure do acknowledge that vendors may not release
patches promptly or at all without the benign detector threatening to make the
vulnerability public; many solve this dilemma by giving vendors a deadline. Three
prominent responsible disclosure policies emphasize timely and continuing contact
between the benign detector, the coordinating center (e.g. CERT/CC2) and the ven-
dor in order to ensure that the patch is released promptly: [CER05], [Rai01], and
[CW02].3 The CERT/CC policy is perhaps the most important, as CERT/CC is
often used as a mediator between benign detectors and vendors. Its policy gives a
forty-five day deadline for the vendor to resolve the problem, although extensions
may be granted if the vulnerability is a particularly difficult one to remediate. The
latter two policies emphasize that the reporter and vendor should negotiate to en-
sure that the vendor has a reasonable length of time to create a patch while not
unnecessarily dragging its feet.

Ashish Arora et al. empirically compare the results of the instantaneous disclo-
sure policy with those of the responsible disclosure policy. They find that instanta-
neous disclosure does force vendors to provide patches more rapidly than otherwise,
and that it also increases the probability that the vendor will provide a patch at
all. They note, of course, that the number of attacks against that vulnerability is
increased (possibly from a starting point of zero) by instantaneous disclosure and
thus that overall social utility may decline [AKN+04].

In a separate work, Arora et al. model a policy for disclosure in which a social
planner (e.g. a publicly funded disclosure institution like CERT/CC) threatens to
publicly disclose a vulnerability if the vendor does not provide a patch before a dead-
line. Vendors are averse to bearing the increased cost of developing a patch rapidly
rather than more leisurely. In Arora et al.’s model, the social planner is explicitly
motivated by the fear of attacker independent rediscovery. Independent redis-
covery occurs when a detector discoveries a vulnerability that has previously and
independently been discovered (but not made public) by a different detector. Their
model includes the time that an attacker independently rediscovers the vulnerability
as stochastic, with a likelihood that increases as time passes after the vulnerability
was found by the benign detector.

2CERT/CC was previously the Computer Emergency Response Team Coordinating Center.

However, now that institution is known only as CERT/CC.
3The [CW02] policy has been retracted by its authors, but it remains influential in the detection

community.
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They find that neither instantaneous disclosure nor non-disclosure is socially
optimal. Furthermore, without a deadline, vendors do not provide patches rapidly
enough. In their model, the social planner discloses after a period less than that
desired by the vendor, so that vendors are motivated to release patches more quickly.
Early disclosure (if it does not result in a hurried patch release by the vendor) thus
accepts some losses due to exploitation against a longer delay in patch release, which
may have resulted in attackers independently rediscovering the vulnerability. Their
results are not altered when they expand the model to include incomplete compliance
in users’ implementing patches [ATX04]. Unfortunately, they fail to weigh the costs
of early disclosure against the risk of attacker independent rediscovery.

In a later work, Hasan Cavusoglu et al. also create a game theoretic model of
the vulnerability disclosure process [CCR05]. They consider the amount of time
vendors are given to create a patch before the vulnerability information is made
public—including the extremes of instantaneous public disclosure or never disclosing
the vulnerability. They model the benefits and costs of vulnerability disclosure
policies to vendors, social coordinators, vulnerability detectors, and users. They
find that no single policy is always optimal: instead, the social coordinator should
alter the amount of time available to the vendor in accordance with the cost of
creating a patch (e.g. its difficulty), the vulnerability’s risk, and the user population.
Although no single policy is optimal, an optimal policy does always exist. However,
for vulnerabilities that affect multiple vendors, no policy can guarantee that all
vendors will release a patch.

In both Arora et al. [ATX04] and Cavusoglu et al. [CCR05], the impetus for re-
leasing patches quickly is the fear of attacker independent rediscovery. This assump-
tion is the opposite of Rescorla’s (see Section 9.1), who argues that the likelihood
of such rediscovery is small because the pool of vulnerabilities is so large. How-
ever, the results below demonstrate that the likelihood of independent rediscovery
is non-negligible and should not lightly be dismissed.

10.2 Possible reasons for rediscovery

Vulnerabilities are likely to be independently rediscovered for three primary reasons:
dependence in the detection process, usage patterns, and attack surface.

10.2.1 Dependence in the detection process

Dependence in the detection process could cause multiple detectors to independently
discovery the same vulnerability. This dependence was discussed in Chapter 7, but
it has a different implication here. The previous discussion referred to the likeli-
hood that the discovery of one vulnerability leads to the discovery of another. This
discussion focuses on the likelihood that the discovery process might lead multiple
individuals, working separately, to discover the same vulnerability.
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First, the use of similar tools to find vulnerabilities is an obvious source of po-
tential independent discoveries of the same vulnerability. Second, when a new class
of vulnerability (e.g. integer overflows) is discovered, individuals will search for in-
stances of that vulnerability in the products in which they are interested. For a
popular product, the more obvious examples of this vulnerability may thus be dis-
covered by multiple independent individuals.

Third, a new class of ‘target’ may be found: for example, a rash of vulnerabili-
ties were recently found in the file processing portions of graphics libraries. Between
August and October in 2004, twenty-two different vulnerabilities were published in
various graphics libraries used by the various POSIX (e.g. Linux) and Microsoft oper-
ating systems.4 Because graphics libraries became a popular target, many detectors
may have looked in the obvious examples of these libraries and thus discovered the
same vulnerabilities.

10.2.2 Usage patterns

When a product is newly released, the most obvious vulnerabilities (e.g. those that
arise from a reasonably frequent pattern of usage) seem intuitively likely to be dis-
covered by multiple users. Brady et al. add that when products are initially released
a surge of flaws will be detected as the product is used in a more wide range of envi-
ronments than it was possible for the vendor to test [BAB99]. However, Arora et al.
reason differently; they claim that the socially optimal patching/disclosure times are
more lengthy when a product is newer, because attackers have not yet learned the
product [ATX04]. The S-shaped VDM proposed by Alhazmi & Malaiya combines
these two beliefs: immediately after the release of the product, few vulnerabilities
are discovered while detectors learn the product. Then, after they are knowledge-
able about the system, detectors rapidly uncover a large number of vulnerabilities
[AM05b].

10.2.3 Attack surface

A limited attack surface is another cause of independent rediscovery. If the key func-
tionality or security critical portion of a product is small, then interested detectors
will have only a limited area in which to search for vulnerabilities. Although the
vendor’s detectors will also examine this area, the number of independent detectors
is likely more than the number that work for the vendor. As a result, the external
detectors may discover vulnerabilities missed by the vendor’s detectors.

4CVE identifiers: 2004-0200, 2004-0597, 2004-0802, 2004-0803, 2004-0817, 2004-0827, 2004-0929

(all buffer overflows), 2004-0599, 2004-0886, 2004-0888, 2004-0889 (all integer overflows), 2004-

0691 (heap overflow), 2004-0804 (division by zero), 2004-0598, 2004-0692, 2004-0693 (Null pointer

dereferences), 2004-0687, 2004-0688, 2004-0753, 2004-0782, 2004-0783, 2004-0788 (misc.)
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10.3 Evidence of independent rediscovery

Examples of independent rediscovery of vulnerabilities are by their nature hard to
find. If the first benign detector of a vulnerability follows a full-disclosure policy,
then it is difficult for a future benign detector to claim that she detected that
vulnerability independently. The best source of such information thus seems to be
software vendors who receive more than one report of a vulnerability while they are
working on the patch. Unfortunately, not all vendors record the additional reports.
However, Microsoft security patch bulletins do at times credit multiple external
detectors for reporting vulnerabilities.

As a source of information, these bulletins are very limited. First, the multiple
detectors credited may have collaborated on finding the vulnerability, rather than
detecting it independently. Furthermore, the creation of a patch seems usually to
require less than three months and only rarely takes more than seven months: the
window of time for recording independent rediscoveries is thus fairly short. In addi-
tion, benign detectors credited with independently detecting the same vulnerability
may have actually found two different vulnerabilities that were similar and thus
fixed with one patch and assigned the same CVE identifier. Finally, Microsoft may
or may not have a policy to acknowledge multiple independent reporters. Although
they have at times done so, they may have omitted the repeated discoveries at other
times. Nonetheless, the security bulletins provide a means for ascertaining at least
some portion of the times when a vulnerability has been independently reported to
Microsoft.

Fortunately, security professionals often release their own vulnerability report
to the public on the date that the vendor releases its patch, and that report may
be used to ascertain when individuals worked together. I examined three years
of Microsoft vulnerability bulletins: 2002–2004. I started with 2002 because that
was the first year in which Microsoft committed to crediting detectors who followed
the Microsoft disclosure policy. I examined the bulletins through the end of 2004,
the last complete year available when I undertook this effort. For each bulletin
that credited multiple detectors, I tried to discovery whether or not the detections
were independent. For some vulnerabilities, the detectors had posted their own
reports on the web that confirmed whether or not they had worked independently.
For the majority, I contacted the detectors via email. For the Microsoft bulletin
data shown in Tables 10.1–10.3, vulnerabilities are credited as having been detected
independently if at least one of the two reporters (or, correspondingly, two of the
three reporters) asserted that he independently detected the vulnerability.5

5I am thankful for the assistance of the individuals who provided me with information about their

vulnerability finding efforts: Peter Winter-Smith, Brett Moore, Dustin Schneider, Jouko Pynnon,

Jelmer, SPILabs, Renaud Deraison, Cesar Cerrudo, Greg Jones, Ophir Polotsky, Joseph Steinbberg,

Noam Rathaus, Michel Trepanier, zenomorph, qFox, Mark Litchfield, David Litchfield, Rodrigo

Gutierrez, Roozbeh Afrasiabi, Yorick Koster, and Mike Price.
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Year Not credited Confirmed independent reporters Total
1 2 3

2002 62 71 5 0 138
2003 22 43 4 0 69
2004 22 54 3 2 81

Total 106 168 12 2 288

Table 10.1: The number of vulnerabilities listed in Microsoft security bulletins with-
out any credited detectors, with a single credited detector, with two confirmed inde-
pendent detectors, and with three confirmed independent detectors.

Year Multiple reports* All credited reports Multiple/Total

2002 5 76 6.58%
2003 4 47 8.51%
2004 5 59 8.47%

Total 14 182 7.69%
*Reports credited to either two or three independent reporters.

Table 10.2: The total number of vulnerabilities credited and the number credited to
multiple independently working detectors in Microsoft security bulletins.

Table 10.1 shows the number of individual vulnerabilities announced by Mi-
crosoft via security bulletins. In the second column is the number of vulnerabilities
for which Microsoft provided no reporting credit: presumably these vulnerabilities
were either discovered internally or publicly announced before they were reported
to Microsoft (i.e. instantaneous disclosure). The third column reports the number
of vulnerabilities for which Microsoft identified exactly one detector. The fourth
column lists the number of those vulnerabilities that had exactly two confirmed in-
dependent reporters; the fifth column lists the number of those vulnerabilities that
had exactly three confirmed independent reporters. The final column is total number
of vulnerabilities noted by Microsoft in security bulletins.

Table 10.2 summarizes the total number of confirmed multiple reports in the
second column (i.e. those vulnerabilities for which two or three individuals inde-
pendently reported the vulnerability to Microsoft). The third column is the total
number of vulnerabilities for which anybody is credited: both single reports and
multiple reports. The final column is the percentage of vulnerabilities for whom
multiple individuals are credited with the report. The final column thus represents
the percentage of vulnerabilities that were independently rediscovered in the reason-
ably short time frame that Microsoft was working to create a patch.

Table 10.3 lists each vulnerability that was confirmed to have been discovered
by multiple independent detectors and notes the dates it was disclosed to Microsoft
(as remembered or recorded by the reporter), the patch date, and the vulnerability’s
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CVE Disclosure dates Date public Patch
1st* 2nd 3rd creation

2002-0018 2000-10-31 ? 2002-01-30 456 days
2002-0074 2001-12-03 ? 2002-04-10 128 days
2002-0641 2002-05-28 ? 2002-07-10 43 days
2002-0693 2002-07-31 ? 2002-10-02 63 days
2002-1145 2002-08-23 ? 2002-10-16 54 days
2003-0226 c.2003-01-15 ? 2003-05-28 133 days
2003-0228 2003-03-14 2003-03-23 2003-05-07 54 days
2003-0528 c.2003-07-23 2003-07-29 2003-09-10 49 days
2003-0662 c.2003-04-15 ? 2003-10-15 183 days
2003-0908 c.2003-10-15 ? ? 2004-04-13 181 days
2004-0123 c.2004-01-13 ? 2004-04-13 91 days
2004-0212 2004-05-06 2004-06-20 2004-07-07 2004-07-13 68 days
2004-0214 c.2002-04-15 2004-08-03 2004-10-12 758 days
2004-0216 c.2003-04-15 2004-07-12 2004-10-12 546 days
*Dates preceded by a ‘c.’ are approximate. When the reporter remembered only the week

or month, the middle of that period was chosen.

Table 10.3: The dates on which the independent reporters disclosed each vulnerability
to Microsoft. Some entries have question marks, indicating that the reporters either
did not know the date or did not respond to requests for information. The final
column shows the days that elapsed between the first known disclosure date and the
patch date.

age (the days between the first known disclosure date and the patch date). If not
every date on which the vulnerability was disclosed to Microsoft is known, then the
earliest known date is used: this practice may thus underreport the age.

These instances of multiple reporting suggest that vulnerability rediscovery does
occur. The most interesting information would be to look for a relationship between
the length of time the vendor works on a patch and the likelihood of rediscovery.
Unfortunately, complete information on the dates when vulnerabilities were reported
is unavailable: not every reporter could be reached or could remember the date on
which she reported the vulnerability.

Nonetheless, the information that these bulletins provide is an indicator that
vulnerability rediscovery occurs ‘in the wild’ and that it may be common. Again,
however, it is important to note that the evidence presented above assumes that
related but different vulnerabilities were not assigned the same CVE and patched
at the same time.
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10.4 Conclusion

The evidence presented here suggests that multiple, independent discoveries of the
same vulnerability do occur—and they occur in time frames that are often less than
a year. This result provides support for the literature that assumes independent re-
discovery. It thus suggests that forcing vendors to patch their vulnerabilities rapidly
is indeed socially beneficial.
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Chapter 11

Economic Approaches

In the previous chapters, I have considered the application of software engineering
tools to the problem of measuring software security. The existing work on VDMs and
vulnerability databases has shortcomings; nonetheless, these tools have the potential
to provide real value to vendors. In particular, they will assist vendors in planning,
resource allocation, and the evaluation of different development strategies. However,
one shortcoming of these models is difficult or impossible to overcome: the time and
effort invested in vulnerability discovery in a given product will likely change over
time. The engineering approach assumes a constant (or slowly changing) vulner-
ability detection environment. If that environment changes, then the engineering
approach will be rendered inaccurate, at least until new information is gathered.

Another, complementary, approach is economic: it looks at measuring software
security through market-mechanisms. As a means of measurement, this approach
is superior to the engineering approach. The metric is monetary and thus readily
understandable. Furthermore, the existence of an increasing reward will serve to
normalize the effort invested in finding vulnerabilities: if not enough detectors are
looking for vulnerabilities, the reward will increase in value and thus induce more
participation by detectors. A market-based approach might therefore provide a
more accurate—and useful—reflection of the true software security of a system than
a software engineering approach.

A market-based metric would quantify software security such that buyers could
effectively assess their risk. It might also allow vendors to provide a quantitative
assurance for their product. One such metric would be the ‘cost to break’ a system.
A number of security firms have contests in which they offer prizes for ‘breaking’
their own product or the mathematical foundation upon which their product is built
[Gol04; RSA04].

In 2002, Stuart E. Schechter proposed creating markets for reports of previously
undiscovered vulnerabilities. He argued that the bid, ask, and most recent sale prices
in such a market approximate the labor cost to find a vulnerability. He further
argued that these prices can establish which of two products the market deems to
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have vulnerabilities that are less expensive to find [Sch02a; Sch02b; Sch04].
Schechter characterizes his idea as a vulnerability market (VM). However, this

concept can also be characterized as an auction. When considered this way, auction
theory provides a number of useful tools for assessing its effectiveness. First, in Sec-
tion 11.1, I consider the literature on economic approaches to measuring software
security. In Section 11.2 I describe the current situation with respect to testing and
vulnerability detection. Section 11.3 reviews Schechter’s vulnerability market and
notes some attacks that it anticipates and against which it defends. In Section 11.4,
I review the pertinent literature in auction theory and consider Schechter’s vulnera-
bility market as a ‘bug auction.’ In Section 11.5, this perspective is used to identify
a number of improvements to the original design. Section 11.6 identifies two attacks
by detectors that are applicable to Schechter’s vulnerability market and articulates
alterations to the bug auction to defend against these attacks. Attacks by the vendor
are considered in Section 11.7. In Section 11.8, I note some fundamental problems
with both the vulnerability market and the bug auction. Section 12.2 discusses some
areas of future work and Section 11.10 summarizes the results.

Throughout the paper, a vulnerability market as characterized by Schechter will
be referred to as a VM. A bug auction will refer to a VM that has been modified as
suggested in this chapter. This chapter is based on work I have previously published
[Ozm04]. I will thus retain the nomenclature ‘bug auction,’ although this term is
not in accord with the definitions I introduced in Chapter 2.

11.1 Literature review

L. Jean Camp & Catherine Wolfram proposed a market through which vulnerability
credits could be traded; such markets have worked previously to create incentives
for the reduction of negative externalities like environmental pollutants [CW00].

Given the emergence of a black market for reports of undiscovered vulnerabilities,
metrics that estimate the cost to discover a vulnerability may be more valuable than
those that quantify the reporting rate. Several organizations are now actively pur-
chasing vulnerabilities, so an open market or auction as described in this literature
is not infeasible.

However, the market that does exist is problematic. The existing purchasers,
such as iDefense [iDe07] and TippingPoint [3Co05], are not sharing pricing infor-
mation, hindering the movement toward an open market or auction. Charlie Miller
describes the difficulty for a seller to ascertain an appropriate price and find a benign
purchaser [Mil07]. Another organization, SNOsoft Research, has offered its services
as an intermediary between buyers and sellers [SNO07].

Furthermore, the business models of the existing organizations are not socially
optimal: they always have an incentive to leak information about the vulnerability
[KT04].
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Until an open market with visible pricing arises—and until that market has
resulted in several years of data—other means of measuring software security are
necessary.

11.2 Software life cycle

The life cycle of software systems can be divided into three distinct phases. In the
pre-release phase, the product is still under development and testing; it has not
yet been commercially released. Post-release, the product is commercially available
and used by customers. Post-depreciation, the vendor is no longer interested in
actively improving the product or its security, usually because a successor product
has become available. The VM is a tool for finding vulnerabilities during the pre-
release and post-release phase.

Currently, vendors’ pre-release testing occurs both in-house and using external
volunteers (beta testers). During the post-release phase, vendors learn about vul-
nerabilities in four general ways (in order of decreasing preference on the part of the
vendor): vendor detectors, directly from benign external detectors, public fora, or
exploits ‘in the wild.’

The first of these, vendor detectors, is the most attractive to vendors. Unfortu-
nately, for any reasonably complex software product, internal testing may find some
vulnerabilities but is unlikely to find all of them [BAB99].

Second, benign external detectors identify vulnerabilities after the product is in
production and available to consumers.

The third source of vulnerability reports is public fora. The vendor learns about
the vulnerability at the same time as the general public and must then race to create
a patch before the vulnerability can be exploited.

Fourth, the vendor can learn about a vulnerability when it is exploited. For
example, an exploit circulating in the black market might be detected when it is
used against a system. This scenario is generally the worst for the vendor, as it can
result in prominent negative publicity.

11.3 The vulnerability market

Schechter envisages the VM as a tool both to improve a product’s security and to
quantitatively assess this security. Vendors would ideally recoup the expenses they
incur from the VM by the increased sales they achieve from having a more secure
product. (Or, conversely, vendors would recoup their expenses by retaining those
customers they would otherwise lose due to the negative publicity and other effects
of security failures.) He also notes that the VM can be extended to improve a
product’s quality, in addition to its security.

Schechter argues that the vendor is most interested in three properties: the cost
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of finding vulnerabilities (‘value’), the speed with which they are found (‘speed’),
and the order in which they are found (‘order’). The last of these goals is based
on the assumption that vulnerabilities are not stochastically distributed; rather, the
most common and obvious vulnerabilities should be found first, because these are
the vulnerabilities most likely to become evident when the product is used [BAB99].
This belief is supported by the evidence for multiple independent discoveries of the
same vulnerability that was presented in Chapter 10. By offering a monetary reward
for vulnerabilities, Schechter argues that vendors will find them more rapidly (e.g.
earlier in the production process, when they are less expensive to fix) and that the
most obvious vulnerabilities will be identified first.

Schechter refines his initial proposal in a number of ways, by including: a con-
tinuously increasing reward, a reward spectrum, and a trusted third party.

Pre-release, the reward R is small when first offered; it then grows over time
until it is claimed. After each new vulnerability is reported and verified, the reward
amount is reset to R0, the minimum reward value. If a vulnerability is reported more
than once, only the first reporter receives the reward. The continuously increasing
reward scheme maximizes value at the expense of speed: it trades potential delays
in the reporting of vulnerabilities in return for monetary savings. A detector can
choose to report a vulnerability at any time; waiting longer increases the reward she
will receive, but it also increases the probability that another detector will report
the same vulnerability and thus deprive her of the reward. (The post-release phase
may differ and is described below.) If the vulnerability is genuine and unique, the
reward will be reset [Sch02a].

A vendor may also create a spectrum of rewards, so it does not pay a large
reward for an unimportant vulnerability. To reduce complexity, only one reward is
published: the category of the vulnerability ascertains the fraction of the reward that
the detector receives. During the pre-release phase, this refinement can also be used
to improve the product’s quality: the reward can also be offered for non-security
related faults. For example, a report of an important vulnerability (e.g. a remote
root vulnerability) might have a multiple of one and thus earn R, a less important
vulnerability (e.g. a local privilege escalation vulnerability) might earn 4

5R, while a
minor quality fault (e.g. a misspelled dialog box) might earn 1

10R. Because faults
can be related (see Section 10.2), the reward is reset after each report—regardless
of the fault’s classification [Sch02a].

Vendors and detectors interact through a trusted third party (TTP) who ensures
that the vendor pays the reward when appropriate and that the detectors may remain
anonymous. Involving the TTP prevents one form of vendor cheating: the vendor
cannot accept vulnerability reports and falsely claim that the reports are non-unique
(which would enable it to avoid paying the reward). The (pseudo)anonymity it pro-
vides detectors allows them to submit a report without fearing retaliation by either
the vendor or the black market. If a reward spectrum is used, the TTP will rank the
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submitted vulnerabilities according to severity and thus determine the proportion
of the reward that the detector receives; using the TTP prevents the vendor from
minimizing the severity of a vulnerability in order to pay a smaller proportion of the
reward. (Other attacks by the vendor are considered in Section 11.7.) However, the
TTP will have less knowledge of the product than the vendor; as a result, verifying
reports will be more difficult for it. In order to ease the burden of verification, all
vulnerability reports must include an example program that exploits the vulnera-
bility. This requirement will result in rapid verification and minimize the expense
of employing a TTP. Additionally, to reduce the frequency of ‘frivolous’ reports,
detectors may be charged the transaction cost of submitting a report; the minimum
reward (R0) will always be equal or greater to that transaction cost [Sch02a].

The VM is thus first implemented pre-release, using the continuously increasing
reward; both the vendor’s detectors and some number of external detectors partic-
ipate (Section 11.8.4 explains how detectors obtain the product). If this approach
is taken, the vendor needs to ensure that the existence of the market is incentive
compatible with respect to the vendor detectors (those detectors directly employed
by the vendor). The goal of this phase is to identify and fix those vulnerabilities
that are easy to find. The product is not commercially released until the reward for
finding a vulnerability has gone unclaimed for some period of time.

Perhaps the best way to describe the VM is to use a (best case) hypothetical
example:

Software vendor DiligentCompany builds the closed-source SecureProduct.
After SecureProduct is finished, the quality assurance division of DiligentCom-
pany tests the product and identifies a number of vulnerabilities. These vul-
nerabilities are fixed and SecureProduct is deemed ready for wider testing. So,
DiligentCompany engages TTP, a trusted third party, to oversee a vulnerability
market. DiligentCompany sets R0 = $100 and decides that R will increase at a
rate of $1/hour. Quality faults are worth 1

10R, while vulnerabilities are worth
R. The TTP then distributes beta (pre-release) copies of SecureProduct to
external detectors Alice and Bob.

After ten hours of testing, Alice identifies a quality fault. She submits the

fault to TTP. TTP verifies the fault and pays Alice R = ( 1
10 )[100 + (1)(10)] =

$11. TTP then resets the reward to R0 = $100. This process continues for two

months, with a number of quality faults and vulnerabilities identified and fixed.

At the end of two months, the reward has climbed to R = 100 + (1)(24)(14) =

$436 because no faults have been found in the past fourteen days.

The product is then made commercially available, and the post-release phase of
the VM begins. R is reset to a new R0, the value of the security assurance the vendor
is offering its customers (the reward is now offered only for security vulnerabilities).1

1The security assurance is not a guarantee: the vendor is not offering to recompense customers

if they suffer losses due to a security breach.
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Because the reward continues to grow and then be reset when vulnerabilities are re-
ported, the security assurance is dynamic but provides a constant assurance at the
level of R0. Alternately, R can be set to a constant level (R does not increase) in
order to provide a stable security assurance. The choice to use a continuously in-
creasing reward or a stable reward can be made based on the vendor’s perception of
the product’s quality and the perceived reputation benefits of a continuously increas-
ing reward. Regardless of whether or not the reward is increasing, its magnitude
when unclaimed is the lower bound on the product’s cost to break.2 The product
can safely be used to protect information whose total worth, summed across each
customer and installation, is less than or equal to the magnitude of the unclaimed re-
ward. Any rational, risk-neutral criminal who discovers a vulnerability would rather
report it to the vendor and receive the reward than risk the legal consequences of
an attack that could at most reap the same monetary benefit.

Of course, for a widely used product, the cumulative value of information that
relies on that product will almost certainly be greater than the assurance provided
by the vendor. However, a potential attacker faces the difficulty of converting access
to that information into monetary gain: the reward may still be the most attractive
source of remuneration for locating a vulnerability. Perhaps more importantly, the
real value of the reward is comparative: it highlights the security of the product
relative to its competitors.

DiligentCompany decides that SecureProduct is now secure and commer-
cially releases it. DiligentCompany decides to also use a VM in the post-release
phase. It again contracts with TTP. Now DiligentCompany sets R0 = $250 and
advertises that SecureProduct has a $250 security assurance. R still increases at
a rate of $1/hour, but the reward is now offered only for security vulnerabilities.

SecureProduct is widely adopted. It is used in a variety of environments,

and as a result four new vulnerabilities are identified and reported. Then, no

vulnerabilities are identified for thirty-two days. DiligentCompany sends press

releases to industry journals to highlight the fact that the reward stands at

$1018 and remains unclaimed. Sales of SecureProduct increase dramatically.

However, the total number of vulnerabilities found in a system is sometimes used
as a rough measure of software security. As a result, a vendor that employs a VM
may be vulnerable to public relations attacks from a competitor who does not.

Now, BigCompetitor enters the market. It advertises that its Competing-

Product is more secure than DiligentCompany’s SecureProduct. BigCompetitor

notes that four different vulnerabilities have been identified in SecureProduct.

Although those vulnerabilities have been fixed, BigCompetitor argues that these

2In actuality, the magnitude of the unclaimed reward only approximates the cost to break: it

also includes transaction costs, risk, etc. However, for the purposes of the VM, this approximate

cost is sufficient.
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vulnerabilities indicate the poor quality of programming in SecureProduct. In

contrast, no vulnerabilities have been identified in CompetingProduct! Sales of

SecureProduct plummet.

Schechter provides a defense against this public relations attack: he notes that
any vendor can bootstrap the use of the VM in order to differentiate itself from
competitors. The vendor offers at least R0 for vulnerabilities in its product, thus
establishing a lower bound on the cost to break its own product. It then employs a
TTP to purchase, at a lower price, a single vulnerability for its competitor’s product
(establishing an upper bound on the cost to break that competitor’s product). The
vendor has thus shown that its product is more secure than the competitor’s: the
lower bound on the cost to break of the vendor’s own product is higher than the
upper bound on the cost to break of its competitor’s product [Sch02b]. Although the
value of the reward and the quantitative assurance may thus be low when compared
to the total value of information that relies on the product, the use of the VM enables
the vendor to quantitatively assert that its product is relatively secure. That is, the
product is more secure than those offered by competitors.

DiligentCompany decides that it must respond to BigCompetitor. So, Dili-
gentCompany pays TTP to offer a $100 reward for any vulnerabilities in Com-
petingProduct. A vulnerability is soon reported to TTP and the reward is
paid. Because it is employed by DiligentCompany, TTP does not report the
vulnerability to BigCompetitor (or to DiligentCompany).

Now DiligentCompany advertises that it offers a security assurance of $250
on SecureProduct, while vulnerabilities for CompetingProduct can be pur-
chased for just $100! SecureProduct is thus more secure than CompetingProd-
uct!

BigCompetitor has no choice but to respond. It employs TTP to run a

vulnerability market for CompetingProduct. It matches the $250 security as-

surance provided by DiligentCompany. However, BigCompetitor decides that

the reputation advantage of an increasing reward is not worth the cost. So, its

$250 security assurance is constant, rather than continuously increasing.

11.4 The vulnerability market as an auction

Schechter’s VM proposal is innovative, but it would be more effectively structured as
an auction, for which the economics literature can provide useful insight. Although
a bug auction would be monopsonistic, I will follow convention in this section by
using monopolistic auctions for my general examples. In a monopolistic auction,
many buyers compete to purchase from just one seller, while in a monopsonistic
auction many sellers compete to sell to just one buyer.

Auctions can largely be divided into two types: first price and second price.
The most common example of a first-price auction is the Dutch, or open first-price
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descending, auction. In a Dutch auction the seller sets an exceptionally high price
for the good being sold. That price then begins to descend automatically. When a
the price reaches a point at which a buyer considers it reasonable, she signals the
seller that she will purchase the good at that price; the first buyer to signal the seller
thus obtains the good at the first price she is willing to pay for it.

The commonly used example of a second-price auction is the English, or open
second-price ascending, auction. In an English auction, buyers compete with each
other by offering increasingly higher bids for the good being sold. When only two
buyers remain in competition, the bids will increase until one bid is equal to the
lower of the two remaining bidders’ valuations.3 The winning buyer will then place
a bid one unit higher than the losing buyer’s valuation and thus obtains the good at
the second price: the price at (or just above) the valuation of the item by the second
highest bidder. The winning buyer’s valuation may be much greater than the price
he pays.

First-price and second-price auctions can also be held as closed auctions. In this
instance, the bids would be sealed when submitted and then opened simultaneously
by the seller. The winner would then pay either the price of her offer, or the price
of the second-highest offer, for the respective types of auctions.

Although these four auctions are different in important ways, they are revenue
equivalent : under standard conditions they provide on average the same revenue to
the seller of the item, because rational bidders adjust their behavior according to
the auction’s structure [Vic61; RS81]. Those conditions are [MM87, p. 706]:

1. All bidders are risk neutral.

2. Each bidder’s valuation of the good is private and independent of the good’s
valuation by other bidders.

3. Bidders are symmetric: they draw their values from the same probability
distribution.

4. The seller’s revenue comes entirely from the bids themselves; it receives no
payments from the bidders for the privilege of bidding and no revenue from
the use of the good being sold.4

Schechter constructs a vulnerability market, perhaps because bootstrapping this
market may require vendors to offer rewards for finding vulnerabilities in competitors’
products. However, he notes that when the vendor is willing to reward anonymous
detectors, that vendor rapidly becomes the only important buyer because of its

3That is, the price reaches the value that he places upon the item. Below this value, he would

purchase the item and earn a profit. Above this value, if he purchases the item he suffers a loss. At

this value, he is indifferent as to whether or not he obtains the item.
4This condition does not imply that bidders have no costs for participating in the auction.

Bidders can pay both entry costs and bidding costs in a standard auction; the condition only

requires that these payments are not received by the seller. For example, bidders typically pay

some transaction cost to enter an auction, e.g. traveling to the auction site.
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unique ability to remediate the vulnerability with an update for the product [Sch02a].
Any vulnerability available on the black market will eventually be reported to the
vendor. Because the reward is offered to anybody, either the black market buyer or
seller of a vulnerability would be tempted to engage in arbitrage and increase their
profit by also selling the vulnerability to the vendor. Indeed, since “the only way
to ensure the detectors won’t resell is to take them out of the game, detectors who
wish to avoid sleeping with the fishes will be wary of selling vulnerabilities to anyone
other than the [vendor]” [Sch02a, p. 11]. The only vulnerabilities a vendor will not
learn about are those a detector identifies and then exploits himself (because he
values the exploitation of the vulnerability more highly than the reward) or those
vulnerabilities with black market value greater than the reward.

Thus, when a vulnerability is widely available on the black market or has been
identified by an individual not interested in illegal gains, it will be sold to the vendor
at a price established by the continuously increasing reward function. When consid-
ered this way, the situation can be accurately described as an auction. This auction
has one buyer, the vendor (through its proxy, the trusted third-party auctioneer)
and a potentially unlimited number of sellers, the detectors. If modeled after the
VM, it is a reverse Dutch auction, or open first-price ascending auction, in which the
price is set to be exceptionally low and then rises continuously until it is accepted
by a seller.

Before a more complex analysis of this auction can be performed, it is first
necessary to compare it with the standard auction described above. Requirement
B is fulfilled: detectors’ valuations will in part depend upon the amount of work
they put into identifying the vulnerability (their costs) and will thus be both private
and independent (unless detectors collude, an occurrence that will be discussed in
Section 11.6.2). Requirement A is also fulfilled: no information extant suggests that
detectors will be risk averse or risk prone. Requirement D is met, as well: although
the bidders must pay entry fees (elaborated upon below), those fees are not paid to
the vendor.

Requirement C, symmetry, is more interesting. If the auction is implemented
according to the rules of the VM, bidders are asymmetric because detectors from
different countries will draw their valuations from different probability functions.
Preston McAfee & John McMillan note that a typical example of asymmetry is a
procurement auction in which both domestic and foreign bidders participate [MM87,
p. 706]. In first-price auctions, asymmetry of values can result in the seller capturing
less than all of the available value because the bidder with the highest valuation may
not place the highest bid [MR85; MM87].

Given this shortcoming, it is worth considering the value of using the current
broad format of the VM (Dutch) as opposed to the other main formats (English,
sealed first or second price). For this environment, the Dutch auction has one over-
riding structural advantage: a reward is always offered, ensuring that vulnerabilities
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are reported immediately if they are being traded on the black market. Sealed auc-
tions must be periodic or the bidders can assume that they are the only bidder or
one among few bidders (and thus bid more conservatively, causing the vendor to
overpay). English auctions require a waiting period after each bid to ensure that
other bidders have the opportunity to counter. The delays necessary in these al-
ternative models could cause a detector to first sell a vulnerability on the black
market. The vulnerability could then be in use for the entire interval required by
that auction format before the detector has the opportunity to sell it to the ven-
dor. Vendors concerned about security may be risk averse; if so, then they also
prefer first-price auctions to second-price auctions (although they would prefer a
first-price closed auction over one that is open) [WHR98]. The Dutch auction has
one other advantage: it conveys no information about the number of bidders (see
Section 11.6.2).

Because the reverse Dutch auction seems most suitable to the demands of the
environment, the vendor might attempt to remove the asymmetry through other
means. Unfortunately, any means of remedying the asymmetric distribution of val-
ues would first require that detectors with different probability distributions be
distinguished; this requirement seems overwhelming in an environment in which
anonymity is required and one in which any individual is a potential participant.5

The vendor may thus have to accept the inefficiencies that result from asymmetric
bidders.

We have so far considered only those auctions used to sell a single item. Sellers
with more than one item to sell can employ sequential auctions or simultaneous
multi-unit auctions. Although not found in the initial exposition of the concept,
multi-unit auctions can still be revenue equivalent if the goods to be sold are homo-
geneous [MR89]. However, unlike single-unit auctions, designing multi-unit auctions
to achieve efficient outcomes is difficult [Kle04a]. The bug auction is a sequential
auction, in which the auctioneer will sequentially purchase vulnerabilities from the
bidders.

The bidders in the bug auction must pay for the costs they incur in finding
vulnerabilities (or attempting to find vulnerabilities), whether or not they actually
win the auction. These expenses initially seem to resemble the all-pay auction, in
which bidders pay an amount to the seller based on their bid, whether or not they
win the auction: e.g. government procurement [KLSW02], political lobbying [Kru74]
[BKdV93], and waiting lines [JS82].

However, this initial similarity is misleading. In all-pay auctions, the bidders
must pay according to the magnitude of their bids. By dropping out early, a bidder
can alter the amount he must pay. In the bug auction, the costs are incurred
by each bidder whether or not he is even able to bid; a bidder can incur costs from

5Any user may by chance discover a vulnerability and then report it; in effect, some bidders may

have zero costs for discovery.
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attempting to enter the auction (searching for a vulnerability) but fail in his attempt.
Furthermore, a bidder’s costs are not based on his bid but on the effort required for
him to identify the vulnerability. A better mechanism for modeling these costs in a
bug auction is to consider them to be entry costs.

The VM can be thus characterized as an auction: a sequential open first-price
ascending auction with asymmetric independent private value bidders, high entry
costs, and minimal bid costs.

11.5 Efficiency enhancements

When the VM is considered as an auction, rather than a market, auction theory
provides a number of useful tools for optimizing its structure. In addition, other
enhancements become more clear when the VM is considered from this perspective.
The alterations suggested below are intended to improve the efficiency of the auction;
those alterations intended to cope with attacks are elaborated upon in Section 11.6
and 11.7.

11.5.1 Endogenous entry

Most of the standard auction models assume that the number of bidders is fixed
and known. However, this assumption does not fit many real world auctions, in
which potential bidders first decide whether or not to participate in an auction at
all. For real world auctions, the importance of attracting a sufficient number of
bidders cannot be overemphasized: the addition of a single bidder can benefit the
auctioneer more than optimizations using reservation prices and entry fees [BK96].

The bug auction’s high entry cost is a significant disincentive to potential bid-
ders.6 A further disincentive exists for those detectors who do not participate from
the start of the sequence. Learning the product in order to test it is a non-trivial
entry barrier, but it is one that must be incurred only once. Detectors who incur
this sunk cost thus face lower entry costs for the remaining auctions of the sequence,
and they can then amortize the initial learning cost over the entire sequence.

This area may be one in which speed is more important to vendors than value.
Vendors can benefit from being first to market and thus may prefer as short of a
pre-release testing phase as is prudent. The post-release life of a product is also
usually limited (e.g. by the arrival of future versions of the product). If speed is
of import to the vendor, then it can adjust its spending accordingly to induce high
initial participation without entirely sacrificing the cost savings derived from the
continuously increasing reward function:

6Flavio Menezes & Paulo Monteiro argue that entry costs simply discourage low-valuation bid-

ders and are thus actually optimal from the seller’s perspective [MM96]. However, in their model,

bidders pay a fixed entry cost at a time when they already know their valuation: in the bug auction,

the entry cost is dependent upon each bidder and may influence their valuation.
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Enhancement 1 For the first auction or auctions in the sequence, set the initial
value of the reward to a high level. For the following auctions, the vendor should
commit to offering a reasonably high minimum initial value for the reward.

Alternatively, a vendor might have the reward increase at a more rapid rate or
with discontinuous jumps instead of offering a high starting reward value. Creating a
significant initial incentive is of particular import in order to ‘jump-start’ the first few
auctions in the series and draw a large pool of detectors. Once these detectors have
invested in learning the product, they will have lower entry costs for participating
in future auctions in the sequence. The vendor expends its budget more rapidly
in the beginning of the sequence in return for rapidly increasing the number of
bidders. Increased participation should increase the rate with which vulnerabilities
are identified and thus may well result in more vulnerabilities reported, at a lower
cost, in the long run (because the reward will be claimed when it is at a low level).
Of course the lower costs that could result from this increased competition might
decrease the incentive for bidders to continue searching for vulnerabilities; eventually
a stable participation equilibrium would be reached.

Even without the inducement of a VM, the vulnerability detectors already dis-
cover vulnerabilities and report them directly to vendors, although they often receive
no direct financial reward. Instead, their reward seems to be an increase in their
reputation, an incentive that can be used in combination with the monetary reward
to induce entry.

Enhancement 2 Combine the monetary reward with a reputation reward.

When the vendor releases a patch to remediate the vulnerability, it should also
highlight the pseudonym of the detector that reported the vulnerability. The auc-
tioneer, acting as TTP, could reveal the true identity of a pseudonym at that indi-
vidual’s request (for example to use that reputation to gain employment).

11.5.2 Variable demand

Another important attribute of the bug auction is that it exhibits variable demand
(or variable supply in the terminology of the standard monopolistic auction model).
Each detector has a vulnerability he has discovered. If he is not the first to claim
the reward at this auction, he can claim it during the next auction or the one after.
However, at any time a second detector may identify the same vulnerability and
claim the reward before the first detector. If this situation occurs, the first detector
(who has not yet claimed the reward) discovers that the demand for his vulnerability
has disappeared.

Tibor Neugebauer & Paul Pezanis-Christou perform an extensive analysis and
experimental examination of monopolistic sequential first-price auctions both with
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and without demand uncertainty. They find that demand uncertainty causes high-
value bidders to bid less aggressively at first (i.e. they ‘wait and see’) and then
with increasing aggressiveness; low-value bidders, on the other hand, initially bid
aggressively in a seeming attempt to take advantage of early uncertainty. Casting
their results in the terms of a monopsonistic action like the bug auction, they find
that average prices are lower with uncertainty than without and that prices tend
to decline over the series of auctions [NPC03]. (The latter trend may be countered
by the generally increasing difficulty of finding each new vulnerability as the most
obvious or common vulnerabilities are remediated.) In the bug auction, demand
uncertainty thus seems to benefit the vendor, resulting in lower costs.

However, from the perspective of the detector, two types of demand uncertainty
exist in the bug auction: the anticipated number of auctions that will occur before
another detector discovers the same vulnerability and the total remaining number
of auctions. The latter type of demand uncertainty can have a strongly negative
impact on entry. As noted in Section 11.5.1, each detector pays some one-time cost
in order to familiarize herself with the product; this cost can, to some degree, be
separated from the cost of finding a specific vulnerability. The longer the sequence
of auctions (chronologically), the more opportunity for the detector to amortize the
cost of learning the product.7

However, the VM is designed in such a way as to make forecasting its cost
relatively easy. Although a sequence of infinite length would undoubtedly result in
the most secure product, all products have official lifetimes after which the vendor
is no longer interested in selling, supporting, or enhancing them. An approximate
budget can be created using this maximum duration t̄, the rate of increase r, and an
estimation of the total number of vulnerabilities v: the budget equals rt̄+vR0. The
vendor’s knowledge and approximate budget can be used to eliminate the negative
effect on entry of sequence-length demand uncertainty.

Enhancement 3 The vendor commits to the bug auction until a certain minimum
amount of reward money has been claimed or until a minimum chronological period
has elapsed, whichever occurs first.

11.6 Attacks by bidders

In his exposition of VMs, Schechter ignores or minimizes the impact of two important
attacks: resale and collusion. This section considers each attack in turn and suggests
alterations to the structure of the bug auction to minimize their potential impact. It
is important to note, however, that neither of these attacks is fully defended against:

7The former type of demand uncertainty will also undoubtedly affect entry; however, it is nec-

essary to provide the competition incentive that ensures the vendor obtains value for its testing

budget.
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their existence must be weighed against the benefits provided by the auction in order
to ascertain its utility to any given vendor.

11.6.1 Resale

Although it exists without the VM, the VM is likely to exacerbate the problem of
resale: the potential for detectors to sell vulnerability reports on the black market,
perhaps to malicious hackers. The vendor’s willingness to pay the reward will ensure
that it is eventually informed of vulnerabilities, but it does not ensure that no other
entity is so informed. A smart detector might sell the vulnerability after reporting
it to the vendor. She could truthfully advertise it as having been reported, but as-
yet unremediated. Buyers could then pay a price commensurate with their utility
for a short-lived vulnerability. The VM does not have any real solution to this
dilemma. The potential result of a vendor offering a reward for vulnerabilities found
in a commercially available software product could thus be a temporary decrease
in the security of that product. The reward could induce more detectors to locate
vulnerabilities which would then each be unremediated for some period of time and
available on the black market. This problem cannot be entirely solved, and Schechter
too readily dismisses it [Sch02a, p. 11]. However, an alteration to the bug auction
could decrease the likelihood of resale.

Enhancement 4 If a vulnerability is found to be exploited before the vendor can
release a patch, the reward is reduced by some fraction.

In order to reduce the likelihood of the detector reselling a vulnerability, the
vendor pays its reward conditionally: some fraction of the reward is withheld if
attacks using this vulnerability are found ‘in the wild’ before the patch is released.
This is an incentive for the detector to not resell the vulnerability, but only if the
resale value is less than the amount withheld from the reward. Some portion of
the reward must always be paid to ensure that vulnerabilities available on the black
market are reported to the vendor.

11.6.2 Collusion

Klemperer argues that the two most important aspects of practical auction design are
the encouragement of entry and the deterrence of collusion [Kle04b]. The former goal
has already been addressed. This section considers the problems of both employee-
detector collusion and detector-detector collusion.

Schechter largely ignores the problem of employee-detector collusion (e.g. an
engineer involved with creating the product could team up with a detector not em-
ployed by the vendor in order to create subtle vulnerabilities and then report them
for mutual gain). This problem exists even without the market. A competitor could
pay an engineer to insert a vulnerability into a product. However, the VM creates
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more opportunities (with lower transaction costs) for this attack. Schechter does
suggest, in a different context, that the feedback from the VM be used to drive an
incentive system for engineers; the more rapid feedback provided by the VM could
enable rewards based on the quality of that engineer’s work. A quality incentive sys-
tem of this type might reduce the incentive for ‘cheating’ by colluding with external
detectors. Enforcing legal or contractual penalties for those engineers found to be
collaborating with external detectors is another means of reducing this risk. Sting
operations, in which security officers employed by the vendor pretend to be detectors
and attempt to entice engineers would also increase the risk to engineers of cheating.
Nonetheless, it seems unlikely that this risk could be completely ameliorated, and
at least to the extent that it is a risk without the VM, it remains a risk with it.

Even if employee-detector collusion is limited, the vendor must still concern
itself with collusion between detectors (who could, for example, agree not to submit
reports until the price reached some minimum). One important tool for preventing
such collusion is to keep the number of detectors (bidders) unknown [Kle04b]. No
group of colluding detectors can be sure that they will be the only detectors, thus
limiting their ability to control the auction. Furthermore, because the participants
for any single auction in the series are unknown, no colluding group can identify and
punish a defecting member through retaliatory bidding [CS02].

Enhancement 5 The exact number of detectors will not be public, although when
the number is small an approximate count may be published to entice participation.

The vendor may choose to indicate the approximate number of bidders when that
number is small, because broadcasting this fact can induce entry by other bidders.8

Because the number will be approximate, it need not remove the collusion deterrence
effect of having an unknown number of bidders.

However, in a VM the vendor has no way of determining the number of potential
detectors: it does not even know how many active detectors exist. In addition to its
use in inducing entry, the vendor could obtain knowledge of this number and use it
to tune the starting point and rate of reward change.

Enhancement 6 Detectors benefit by registering in advance with the trusted third
party.

This enhancement must be implemented carefully. Detectors should not be re-
quired to register, because a user (who is not already a detector) who discovers a
vulnerability must be able to report it for the reward. Moreover, the benefit should
be targeted only at detectors: otherwise, if individuals not interested in testing can
receive the benefit, then they will register and the count will be inaccurate. Although

8Menezes and Monteiro assert that if the bidders are risk neutral, knowledge of the number of

bidders does not affect expected revenue from the auction [MM96]. See note 6 for a discussion of

how their model differs from this one.
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the benefit can vary with the situation, an example would be to reduce the trans-
action fee charged to detectors that have been registered for at least three months.
This benefit provides an incentive for individuals who are actively planning to test
the product and claim the reward; on the other hand, individuals who discover a
vulnerability by chance still have an incentive to submit that vulnerability (because
R0 is greater than the transaction fee). Detectors register with the TTP, not the
vendor, so that they can maintain their (pseudo)anonymity.

Even if the vendor chooses not to attempt to register detectors, Enhancement 5
highlights the importance of maintaining (pseudo)anonymity and keeping secret any
knowledge of participation numbers. The vendor should keep the potential for col-
lusion firmly in mind. Many incidental enhancements that might be considered to
improve detectors’ efficiency could also lead to collusion: for example, supplying an
official newsgroup for communication between detectors.

11.7 Attacks by vendors

Schechter largely fails to consider that the vendor may be motivated to ‘cheat’ in
order to save money; it has five primary avenues through which to attack the bug
auction: not paying for vulnerability reports, releasing an exploit into the wild to
reduce the payout to a bidder, abbreviating the length of the auction sequence,
resetting a large reward, and falsely employing a large R0 to jump-start the auction
sequence. However, it is important to note that all of these attacks are against the
detectors; the vendor has no viable means of altering the auction results in a way
that cheats its customers.

The first attack is the simplest against which to defend: bidders refuse to partici-
pate unless the vendor employs a TTP tasked with verifying vulnerabilities, ranking
their severity, and paying the reward [Sch04].

The second opportunity to cheat is to decrease a claimed reward by planting an
exploit (to take advantage of Enhancement 4). However, the existence of exploits
in the wild can result in significant damage to the product’s reputation. This dis-
incentive to cheating would likely dominate any potential savings, with the possible
exception of a vulnerability that is almost trivial (at which point the savings are also
diminished, because the reward spectrum guarantees that the payout is also trivial).

The third attack, abbreviating the length of the auction sequence, is more prob-
lematic. Enhancement 3 proposes that vendors commit to a minimum amount of
reward money and a minimum chronological duration. The vendor can then legiti-
mately halt the auction once either of these minima has been surpassed. This attack
has an obvious defense:

Enhancement 7 The trusted third party should hold in escrow those funds that the
vendor has publicly committed to the auction.
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Of course, if no vulnerabilities are found in the product or the last reward is
unclaimed at the end of the chronological limit, the vendor can be refunded the
remaining money. (Although bidders cannot require a vendor to implement this
enhancement, they can adjust their strategies if it is not implemented.)

The vendor may attempt to cheat if it is no longer interested in spending those
funds previously committed to the auction. It is prevented from arbitrarily halting
the sequence because of the reputation damage it would sustain. The alternative
is for the vendor to employ an intermediary to report vulnerabilities of which it
was already aware until the auction funds are exhausted. A number of disincentives
reduce the risk of this attack. It requires that the vendor introduce these vulnerabili-
ties, either in patches or before the product’s release. Introducing the vulnerabilities
in patches creates a risk that detectors may recognize that the vendor is cheating
(due to the extraordinarily high rate of vulnerability introduction in patches) and
cause the vendor to suffer a reputation penalty. Introducing vulnerabilities before
the product’s release (or leaving unfixed some of the vulnerabilities identified by
internal detectors) would require sufficient foresight. Either of these scenarios cre-
ates a risk that the vulnerabilities will be identified and reported by an independent
detector, thus causing the vendor to pay a penalty (the reward). Even if the vendor
succeeds in ending the auction without arousing suspicion, it suffers a reputation
penalty with respect to the number of vulnerabilities identified and reported in order
to end the auction—unless the vendor is confident that the full amount of money
committed to rewards will be claimed before the chronological end of the sequence.
Essentially, the risk of the vendor cheating to end the auction early is significant
only when the product is of poor quality, an attribute that can be observed by de-
tectors. Detectors can thus factor this information into their strategies in order to
compensate for the risk of a premature end to the auction.

The fourth attack is for the vendor to report (via a proxy) previously planted
vulnerabilities in order to reset the reward when it reaches too large a value. In
essence, the vendor is implementing a reservation price (a cap on the reward value).
Although Schechter designed the VM with a reservation price, the vendor has a
disincentive to employ an explicit reservation price because such caps discourage
entry [LS94]. However, several disincentives seem likely to discourage the vendor
from cheating. Pre-release, if the reward has gone unclaimed for a long period, then
the software must be reasonably secure and vulnerability-free; the vendor should
simply end that phase of the auction in anticipation of releasing the product. The
vendor can then legitimately reset the reward. If the vendor cheats to reset the
reward in the post-release phase, then it suffers a double blow to its reputation: it
decreases the security assurance and also further suffers the reputation penalty of a
vulnerability having been found (although the latter disincentive could be somewhat
decreased if the reported vulnerability is minor).

A further disincentive to resetting the reward lies in the tension between value
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and speed. Resetting the reward maximizes value at the expense of speed, because
detectors who have identified high-value vulnerabilities will wait for the reward to
reach a high level again before reporting them. However, as noted in Section 1,
vendors also value speed: they are motivated to rapidly release their products and to
create the impression of security at as early of a stage in the product’s life as possible.
In addition, resetting the reward may not result in any real savings for the vendor
(unless the vendor is attempting to prematurely end the auction). If detectors are
waiting for the reward to reach a certain level before they will report vulnerabilities,
then they are unlikely to dramatically alter their reserve price because the vendor
has reset the reward. The vendor could continuously reset the reward, but only at
the cost of an increased perception of product insecurity.

The fifth opportunity to cheat arises if the vendor employs Enhancement 1. It
could advertise a large R0 in order to create a high level of initial participation and
then cheat (by having a proxy report a previously planted vulnerability) to avoid
paying the cost of inducing such participation. However, it might thus fail to achieve
the high level of participation that is its goal, and it further suffers the reputation
penalty of a vulnerability having been discovered. (Again, unless it is confident that
the product is of such poor quality that all of the funds committed to the auction
will be claimed before the end of the sequence; however, if it already possesses this
knowledge, then it should simply decrease the funds committed to the auction or
not employ a bug auction at all.)

If the vendor employs Enhancement 7, a final disincentive for the latter three of
these methods for the vendor to attack the auction is legal and financial. If it uses
a proxy to cheat and claim back some of the funds already given to the TTP, then
general accounting practices and taxation laws may make it difficult for the vendor
to explain the reclaimed funds. Furthermore, the proxy still has to identify himself
to the TTP, which may identify a link between him and the vendor.

In general, vendors that are concerned about their reputation have incentives
that discourage cheating. If the vendor is no longer concerned with its reputation,
there exists no real defense against its cheating. However, detectors would likely
have other indications of this disregard and factor it into their strategies.

11.8 Fundamental problems

The previously mentioned attacks can be defended against—through the structural
suggestions made above and through legal, cultural, and managerial tools employed
during the course of the auction sequence. However, Schechter’s market suffers
from four fundamental shortcomings: its expense, the potentially harmful effect on
the vendor’s reputation, the loss of free testing, and the potential for copyright
infringement.

Andy Ozment Vulnerability Discovery & Software Security



Ch. 11: Economic Approaches 114 of 139

11.8.1 Expense

Any vendor can employ the VM to enhance its pre-release testing: it may find that
the VM, in combination with limited in-house ‘white-box’ testing, is more cost ef-
fective than relying entirely on in-house vendor detectors. Deriving the competitive
benefit of the security assurance is more difficult, although Schechter does provide
for bootstrapping the market to force your competitor to also use a VM (see Sec-
tion 11.3).

However, in order to effectively advertise a quantitative level of security (e.g.
a constant stable reward at $20,000), the vendor must always be willing to pay at
least that amount for vulnerabilities reported after the product is made commercially
available; if a rash of unique vulnerabilities are reported, this guarantee could be
rather costly to the vendor.

Schechter implies that few vulnerabilities will be reported after the product is
made commercially available, because he assumes that the VM has been used exten-
sively during the pre-release testing of the product. As a result, Schechter assumes
that, post-release, the reward will not be claimed with any great frequency.

One problem with these assumptions is the value most vendors see in being first
to market. While Microsoft claims to be delaying product releases to ensure a high
enough level of security [Bek02], they are also dominant in these markets. Vendors
that lack the luxury of dominating their markets may be unwilling to employ the VM
in testing for an open-ended period (i.e. until detectors stop claiming the reward).

Another problem lies in the nature of testing. As testing continues, the effort
and time required to find new vulnerabilities probably increases, provided that the
environment is constant. After a complex product is commercially released, the
vendor may receive a flurry of new vulnerability reports because the commercial
users employ the product in a wide variety of new environments. The vendor’s
detectors were unable to anticipate or replicate all of these environments and so did
not find these vulnerabilities [BAB99]. Again, this factor implies that the vendor
may find the reward it offers after the product is commercially released to be more
costly than expected.

11.8.2 Reputation

The problems described in Section 11.8.1 may impact more than just the amount
of money the vendor spends on rewards. If a number of vulnerabilities are reported
in the period immediately after the product is released, the patches released to fix
those vulnerabilities may create the appearance of insecurity.

Schechter notes that, for detectors considering whether or not to participate in
the VM, the perception of security can be more important than the reality [Sch04, p.
47]. However, he does not fully address the impact of perception on the customers
of the vendor. Although a product may be more secure if the VM is used during
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testing and after release, customers might still base their perception of security on
the number of patches disseminated. Reputation may thus be as important as the
three properties already mentioned: value, speed, and order.

One area of future research would be to identify an auction structure that can
better account for reputation while still minimizing the costs to the vendor. The
vendor could perhaps ‘cluster’ its fixes, waiting until is has corrected more than one
vulnerability before issuing a patch. However, it would need to be conscious that
delays in patching any single vulnerability might enable that vulnerability to be sold
on the black market and exploited.

11.8.3 Loss of free testing

The existence of Schechter’s market also alters the interaction that occurs between
the vendor, vulnerability detectors, full-disclosure fora, and the black market that
was described in Section 2.3. One negative effect is that the vendor will have to pay
for the vulnerability reports that it previously received for free from vulnerability
detectors. One the other hand, the VM will potentially draw more analysts and thus
the product may more rapidly approach a secure state, in which most vulnerabilities,
and particularly the most obvious ones, have been identified and remediated. The
existence of resale means that the full-disclosure model of identification will not be
significantly impacted, although again, the vendor will be paying for reports that it
previously received for free.

11.8.4 Copyright infringement

Schechter specifies that all detectors must have “full and complete” access to the
product [Sch04, 66]. This stipulation is necessary to ensure that the product is tested
by the maximum possible number of detectors and that their costs are minimized.
For open-source products, full and complete access is not problematic. For closed-
source products, full and complete access will realistically be interpreted as access
to the product in its executable form, not its source code. Even so, this requirement
may be problematic for closed-source products. If implemented poorly, it could be
used as a means of copyright infringement: individuals who have no intention of
testing could acquire a free copy of the product for personal use. Schechter notes
the possibility of this infringement occurring; to prevent it, he suggests that the
testing copies could have some functionality removed or disabled so that they would
be less useful to a would-be infringer. He argues that illegal copies of most software
are widely available; as a result, those copies put into distribution for testing would
not greatly increase the availability of free copies for those unwilling to pay. The
effectiveness and importance of this attack (and the countermeasure of disabling
functionality) will differ according to the product. If a product is not already widely
available from illegal sources, the vendor may choose to disable functionality. If that
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solution is also not practical, the vendor may choose not to employ the VM with
that product.

11.9 Other economic approaches

The benefits that could be derived from a bug auction, combined with the fact
that commercial entities are now paying for vulnerabilities, suggest that this area is
worth further investigation. Another reasonable question is whether or not there are
other economic tools with which to approach information security. Unfortunately,
two alternative approaches—creating a market for negative results and relying on
insurance—both have severe practical shortcomings.

The first approach is to use auctions to also pay for negative results. In other
words, vendors might also find it useful to know that an entity has run the soft-
ware for ten thousand person-hours and not encountered any failures. However, this
method suffers from an information asymmetry: the vendor does not have a reliable
means of learning whether or not the seller has performed the claimed testing. Like-
wise, the seller cannot prove to the vendor that it has performed the testing. The
asymmetry creates an economic incentive to fake the testing. A seller that does not
perform the testing as it claims will have minimal costs; as a result, it can always
underbid anybody who has actually performed the testing. This situation is similar
to security certification: the solution there has been to use a trusted third party
(e.g. a government) to either perform the testing or to certify the tester.

Another approach is to rely on insurers. The argument for insurance is that
cyber-insurance underwriters assign premiums based upon a firm’s IT infrastruc-
ture and the processes by which it is managed. This assessment results in both
detailed best practices and, over the long run, a pool of data by which the insurance
company can accurately assign a monetary value to the risks associated with certain
practices or software. At the moment, however, the cyber-insurance market is both
underdeveloped and underutilized. This market failure is caused by interdependent
risk and inadequate volume.9

The problem of interdependent risk takes at least two forms. Firms are ‘phys-
ically interdependent’ because their IT infrastructure is connected via the Internet
to other entities, which implies that the work a firm performs to secure itself may
be undermined by failures at other firms. Firms are ‘logically interdependent’ be-
cause cyber attacks often exploit a vulnerability in a system used by many firms.
For example, viruses or worms may have a global impact upon a specific software
platform. This interdependence makes certain cyber-risks unattractive to insurers—
particularly those where the risk is globally rather than locally correlated, such as
worm and virus attacks, and systemic risks such as Y2K [B05; BK06].

9This paragraph and the two that follow are based on joint work with Ross Anderson, Tyler

Moore, and Shishir Nagaraja [AMNO07].
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Because a firm’s security depends in part on the efforts of others, firms underin-
vest in both security technology and in cyber insurance. At the same time, insurance
companies must charge a higher premium because the risks against which they are
insuring are highly correlated: this higher premium may prevent the vast majority
of firms from adequately insuring themselves. As a result, cyber insurance markets
may lack the volume and liquidity to become economically efficient [B05].

Perhaps surprisingly, moral hazard has not proven to be a significant disincentive
to the offering of insurance plans. (The moral hazard in this situation is that the
insured have less incentive to invest in security.) This moral hazard is equivalent
to insuring automobile drivers who may then drive less carefully: only the scale
and complexity differ. However, insurance adjusters are accustomed to false claims
and have experience in detecting them. They work to prevent moral hazard by
establishing best practices and ensuring that the insured comply with those best
practices. In addition, the use of large deductibles is another disincentive.

11.10 Conclusion

Schechter’s VM is an innovative solution to a vexing problem in software security;
although his proposal is daring, the existence of firms already purchasing vulner-
abilities demonstrates that it is not inconceivable for software vendors to employ
this idea. However, the expense of implementing the VM is not trivial: a robust
theoretical understanding of the concept will encourage those vendors who might
consider implementing it.

This chapter has identified areas where auction theory can improve the efficiency
of the VM. It has highlighted attacks that were not considered or were too readily
dismissed by Schechter. Finally, it has noted four fundamental weaknesses of the VM
that can not readily be corrected. I argue that the VM is an important concept,
but one that can be better considered as a bug auction. Considering the VM as
an auction provides a more firm theoretical foundation for understanding the idea.
Further, it enables the vendor to fine-tune the auction to increase its effectiveness.

A bug auction would provide vendors with: the assurance that it will learn
about those vulnerabilities that are available on the black market, the ability to
significantly increase scrutiny of a product (particularly early in the development
life cycle when it is otherwise difficult to achieve this goal), and the ability to provide
a qualitative assurance of security to their customers.

The arguments in favor of using a bug auction in the pre-release phase seem
clear: the vendor benefits from both more testing and, more importantly, from test-
ing in a wide variety of environments. This benefit is gained at the expense of a
potentially more costly testing program and also a potential delay in releasing the
product. While neither of these drawbacks are trivial, the current market emphasis
on security seems likely to make them bearable for some vendors. Assessing the
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use of the bug auction in the post-release phase of a product’s life is more difficult,
but it has the potential to revolutionize the market for secure products. Although
the implementation of a bug auction would require significant changes to the man-
agement culture of vendors and consumers, it nonetheless seems uniquely suited to
providing a relatively strong security assurance and an efficient means of improving
product quality and security.
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Chapter 12

Future Work

Both the engineering and the economic approach to software security show promise:
however, neither is yet fully realized. A great deal of future work is necessary before
they can be utilized with confidence.

12.1 Engineering approach

Software engineers have frequently yearned for a large, high quality database of
faults. In the security field, we are fortunate enough to have several such databases,
some of which have government sponsorship (e.g. the US NVD). In their current
form, these databases offer tantalizing yet ultimately inadequate information for
the purposes of vulnerability discovery modeling. This work has sketched a design
for a next generation of public vulnerability databases: the fleshing out and imple-
mentation of that design remain for future work. That task is perhaps the single
most important one for achieving high quality, useful estimations on vulnerability
discovery.

Katerina Gos̆eva-Popstojanova & Kishore Trivedi have proposed a framework for
a software reliability model which incorporates the possibility of dependent failures
[GPT00]. A useful next step in the VDM field is to extend that work to provide for
estimation and then to apply it to vulnerability data.

The Common Vulnerability Scoring System (CVSS) standard for classifying the
severity of vulnerabilities has recently been proposed [FIR]. As it becomes widely
applied, that standard will enable vulnerability discovery to be analyzed with respect
to severity. For example, has the severity of discovered vulnerabilities changed over
time? A decrease in the number of discoveries could be balanced by an increase in
the severity of those vulnerabilities discovered.
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12.2 Economic approach

Further work on economic approaches includes formally modeling the bug auction.
The bug auction would be modeled as a sequential open first-price ascending auction
with an unknown number of asymmetric independent private-value bidders, variable
demand, high entry costs, and minimal bid costs. A formal model could also compare
the value to the vendor of an asymmetric open first-price ascending auction with
an asymmetric closed second-price auction. This chapter has assumed that the
drawbacks of a closed second-price auction are more significant than those of an
open first-price auction, but formal verification would be useful.

In addition, discovering a means of compensating for bidder asymmetry would
increase the value of the bug auction to vendors.

Also, the costs and efficiency of current quality assurance methods might provide
an interesting comparison with the bug auction. How much do companies currently
spend for their quality assurance detectors to identify a single vulnerability? Do
those detectors typically identify vulnerabilities of only a certain magnitude (e.g.
are user interface faults found and remote vulnerabilities not found)?

Finally, a company named WabiSabiLabi has just been founded to serve as a
trusted third party host for vulnerability auctions [Wab07]. The auctions enable
detectors to sell the vulnerabilities they have discovered. The prices of these auctions
will thus be a fruitful source of information for future investigations of vulnerability
detection.
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Chapter 13

Conclusion

A better means of measuring software security is an important tool for improving
information security in general. While we have not yet advanced to a real measure-
ment, I have proposed engineering and economic approaches to better understand
software security.

13.1 Summary

The engineering approach builds upon existing work; however, it notes that the foun-
dation for that existing work is weak. One critical component of a strong research
foundation is a set of precise, widely accepted definitions. I proposed developer- and
detector-perspective definitions for: vulnerability, vulnerability discovery models,
detection event, software security, detectors, and the events and phases of the vul-
nerability detection life cycle. Using those definitions, I examined the widely-used
National Vulnerability Database and the CVE list upon which it relies. I found that
the maintainers of the CVE list are inconsistent in their definition of a vulnerability,
which has resulted in wide variation in the content of NVD entries.

I also found that the existing literature on vulnerability discovery models cannot
yet be trusted. The assumptions upon which these models are based have not been
proved, and the NVD data to which they are applied is inaccurate. I thus compiled
my own data set of every vulnerability patched by OpenBSD over an eight year
period.

I used the NVD taxonomy and a custom taxonomy to categorize these vulnera-
bilities, and I found that the discovery of vulnerabilities in some of these categories
was dependent. However, this result may be driven by the weakness of the available
taxonomies, which tend to rely too heavily on a few, broad categories.

My examination of the OpenBSD vulnerabilities produced interesting results,
although they are only representative of this one system. 63% of the 155 detection
events that occurred during the study included a foundational vulnerability: one
present in the source code of the first version in the study, OpenBSD 2.3. Moreover,
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even after almost eight years, 61% of the source code remained unchanged since the
foundation version, 2.3.

Because the discovery of vulnerabilities was found to be dependent, I was unable
to rely upon the VDMs commonly used in the literature. However, a graphical, non-
significant, examination of the rate of vulnerability detection in OpenBSD indicated
a decline over time.

Vulnerability disclosure policies are an important part of the vulnerability detec-
tion process. One aspect in the debate about various policies is whether or not the
same vulnerability is likely to be independently discovered by different detectors.
I found strong anecdotal evidence that this situation does occur with non-trivial
frequency. This evidence validates an assumption debated in the literature on vul-
nerability disclosure policies.

The accuracy and effectiveness of VDMs depends upon the data to which they
are applied. Before we can measure software vulnerabilities, we first need to collect
better data on them. A consensus on key definitions is one step towards accomplish-
ing that goal. Another step would be the creation of a next-generation vulnerability
database that would contain more detailed and better data on the events of interest
to those who would measure software security.

To complement the engineering approach, I proposed an economic one. The
‘bug auction’ would enable software vendors to ascertain the monetary value of
vulnerabilities in their own product and that of their competitors. Moreover, it
would enable a minimum guarantee by ensuring that the vendor will always pay a
minimum reward to be informed of new vulnerabilities. This economic measure may
be more a accurate and useful representation of software security than a software
engineering approach.

13.2 Results

Software vulnerabilities and their discovery provide an important means of under-
standing software security, and a better understanding of software security is an
important component of increasing that security and of measuring organizational
risk. This work has illustrated two approaches to analyzing software vulnerabilities
and their discovery: engineering and economic.

An engineering analysis of vulnerabilities can provide vendors with estimates of
the number of vulnerabilities that will be found and the time to the discovery of
the next vulnerability. These two estimates, in turn, will allow vendors to allocate
resources for patching and to compare the effectiveness of different development
methodologies that have been applied to similar products. While previous work on
vulnerability discovery models has been flawed, its shortcomings have been identified
here and can be remedied in future work. This work also proposes a set of data that
can be incorporated into existing vulnerability databases. Over time, this data will
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lead to an improved understanding of vulnerabilities.
The estimates provided by the engineering analysis are dependent upon the effort

invested in vulnerability discovery. A complementary economic approach can use
bug auctions to normalize the effort invested in vulnerability detection and thus
provide a more accurate overall measure of the difficulty in finding vulnerabilities in
a system.

Andy Ozment Vulnerability Discovery & Software Security



Abbreviations & Symbols

Ωknown total number of vulnerabilities known

R Reward
R0 initial Reward

AB Average Bias

AE Average Error

AIC Akaike Information Criteria

AME Alhazmi-Malaiya Effort-based

AML-C Alhazmi-Malaiya Logistic - Constrained

AML Alhazmi-Malaiya Logistic

AVE Access Validation Error

BCE Boundary Condition Error

BIND Berkeley Internet Name Daemon

BO Buffer Overflow
CERT/CC see: Chapter 10, Footnote 2

CERT Computer Emergency Response Team

CE Configuration Error

CM Coding Mistake

CVE Common Vulnerability and Exposure

CVS Concurrent Versions System

DEI Design Error, Interaction

DE Design Error

ECH Exceptional Condition Handling error

EE Environmental Error

FD File Descriptor

FS Format String

F File handling / file system

HC Heap Corruption

HPP Homogenous Poisson Process

IEEE Institute of Electrical and Electronics Engineers

IE Internet Explorer

IIS Internet Information Services

IOU Integer Overflow/Underflow
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ISS Internet Security Systems

IVE Input Validation Error

KLOC one thousand Lines Of Code

LVD Linear Vulnerability Discovery

MLOC Million Lines Of Code

MTTNV Mean Time To Next Vulnerability

NC Not Classified

NHPP Non-Homogenous Poisson Process

NPD Null Pointer Dereference

NVD National Vulnerability Database

OSVDB Open Source Vulnerability DataBase

PLR Prequential Likelihood Ratio

POSIX Portable Operating System Interface

RH RedHat Linux

RPC Remote Procedure Call

R Race

SNMP Simple Network Management Protocol

SRM Software Reliability Model

TTNV Time To Next Vulnerability

TTP Trusted Third Party

URL Uniform Resource Locator

US United States
US/CERT United States / Computer Emergency Response Team

VDM Vulnerability Disclosure Model

VM Vulnerability Market
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